Let's build a computer!

Designing a CPU

Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2008 • http://www.cs.Princeton.EDU/IntroCS

TOY Lite

TOY machine.

- 256 16-bit words of memory.
- 16 16-bit registers.
- 1 8-bit program counter.
- 2 instruction types
- 16 instructions.

TOY-Lite machine.

- 16 10-bit words of memory.
- 4 10-bit registers.
- 1 4-bit program counter.
- 2 instruction types
- 16 instructions.

CPU: "central processing unit"

computer: CPU + display + optical disk + metal case + power supply + ...

Last lecture: circuit that implements an adder

This lecture: circuit that implements a CPU

Primary Components of Toy-Lite CPU

2

4

Arithmetic and Logic Unit (ALU) \checkmark

Memory

Toy-Lite Registers

Processor Registers: Program Counter and Instruction Register

"Control"

Goal: CPU circuit for TOY-Lite (same design extends to TOY, your computer)

A New Ingredient: Circuits With Memory

Combinational circuits.

• Ex: majority, adder, decoder, MUX, ALU.

Sequential circuits.

- Output determined by inputs and current "state".
- Ex: memory, program counter, CPU.

• Output determined solely by inputs.

- Ex. Simplest feedback loop.
- Two controlled switches A and B, both connected to power, each blocked by the other.
- State determined by whichever switches first.
- Stable.
- Aside, Feedback with an odd number of switches is a buzzer (not stable).

Doorbell: buzzer made with relays.

write 0

write 1

read

7

0 state

1 state

Memory Overview

Computers and TOY have several memory components.

- Program counter and other processor registers.
- TOY registers (4 10-bit words in Toy-Lite).
- Main memory (16 10-bit words in Toy-Lite).

Implementation.

- Use one flip-flop for each bit of memory.
- Use buses and multiplexers to group bits into words.

Access mechanism: when are contents available?

- Processor registers: enable write.
- Main memory: select and enable write.
- TOY register: dual select and enable write
 - 🔨 need to be able to
 - read two registers at once

memory bit

- Two cross-coupled NOR gates
- A way to control the feedback loop.
- Abstraction that "remembers" one bit.
- Basic building block for memory and registers.

Caveat. Timing, switching delay.

Processor register Bit

Processor register bit. Extend a flip-flop to allow easy access to values.

SR Flip-Flop

NOR aate

write 0

Memory and TOY register bits: Add selection mechanism.

Memory and TOY register bits: Add selection mechanism.

Ex 2. TOY-Lite instruction register (IR) holds 10-bit current instruction.

Ex 2. TOY instruction register (IR) holds 16-bit current instruction.

Processor Register

Memory Bank

Processor register. ____ don't confuse with TOY register

Stores k bits.

- Register contents always available on output bus.
- If enable write is asserted, k input bits get copied into register.
- Ex 1. TOY program counter (PC) holds 8-bit address.
- Ex 2. TOY instruction register (IR) holds 16-bit current instruction.

Memory: Interface

Memory bank.

- Bank of n registers; each stores k bits.
- Read and write information to one of n registers.
- Address inputs specify which one. _____ log_2n address bits needed
- Addressed bits always appear on output.
- If write enabled, k input bits are copied into addressed register.

- Ex 1. Main memory bank.
- TOY: 256-by-16
- TOY-Lite: 16-by-10
- Ex 2. Registers.
- TOY: 16-by-16
- TOY Lite: 4-by-10
- Two output buses.

Memory: Component Level Implementation

Decoder plus memory selection: connect only to addressed word.

Another Useful Combinational Circuit: Multiplexer

Multiplexer (MUX). Combinational circuit that selects among input buses.

- Exactly one select line i is activated.
- Copies bits from input bus i to output bus.

16 10-bit words

- input connected to registers for "store"
- output connected to registers for "load"
- addr connect to processor Instruction Register (IR)

to registers (int)																	
10 10	Z	501)													to		Ļ
		ļ	Ŀ	ļ	Ly I	ų	Ŀ	ļ		ļ	A R	Ļ	J.	Ľ,	Ŀ	ļ	
		بي ماريخ	اللہ الج	}¥ ₩	₩ ₩	Å ₩ ₩	件 あれる	Å¥ ∰lid Þ		ې چېلوچ	ب ب بهبرې	भू सुमद्	بي مولم مولم	भू सम्पर्ध	₩ ₩	بي مالي مالي م	
	新城	猫峰老	満山さ	新城	猫城	猫哇	猫哇	新城市	新城	茶中茶	猫哇萨	猫城科	猫城科	猫根神	游내려	猫城科	
	黄叶坛	猫녀여	猫哇	क्रम्ट	猫哇	猫村な	क्रम्ट	猫哇	猫哇	क्रम्ये	猫村女	猫村を	猫哇	猫哇运	猫哇	猫村兵	
		堂면석	游면동	क्रम्द्र	堂면독	堂면학	堂면적	क्रम्द्र	游면동	堂면석	游면동	堂면독	游년	क <u>्र</u> म्ये	潮면동	क्रम्य	
_	滿고4천	游며동	游내려	क्रम्य	游년석	游며동	游년성	क्रम्द्र	游년천	游내려	游년천	游년동	游년	游며동	堂면석	游내려	
	「新せる	浙내천	教理な	滿내려	游내천	游관	浙내천	游내려	滿내천	海과천	क्रम्य	क्रम्ट	浙내천	猫哇	潮내려	浙내천	
	<u>क्र</u> म्द्र	游면독	教理な	滿내さ	游면독	<u>क्रम</u> व्य	क्रम्द	游면독	滿내さ	游면되	क्रम्य	क्रम्द्र	潮년	教理な	游戏	潮면되	
	御년동	游년성	猫哇	滿내さ	游년천	潮면되	潮내려	游내려	猫哇	游년학	新刊	潮년	潮관	猫村兵	फ्र <u>ी</u> म्स्	潮내려	
	南교	堂면독	潜动	游내려	游년천	潮면독	堂면역	游년석	游내려	游년	教理な	堂면독	潮년	猫哇	游년석	潮면독	
		猫哇萨	茶山花	浙내천	茶山本	浙내천	教社会	新山本	浙내천	浙내천	浙내천	क्रम्द	猫哇	游내려	游내려	क्रम्द	

Nuts and Bolts: Buses and Multiplexers

Multiplexer (MUX). Combinational circuit that selects among input buses.

- Exactly one select line i is activated.
- Copies bits from input bus i to output bus.

4 10-bit words

- Dual-ported to support connecting two different registers to ALU
- Input MUX to support input connection to ALU, memory, IR, PC

How To Design a Digital Device

How to design a digital device.

- Design interface: input buses, output buses, control wires.
- Determine components.
- Determine datapath requirements: "flow" of bits.
- Establish control sequence.

Warmup. Design a program counter (3 devices, 3 control wires).

Goal. Design TOY-Lite computer (10 devices, 27 control wires).

Program Counter: Interface

Counter. Holds value that represents a binary number.

- Load: set value from input bus.
- Increment: add one to value.
- Enable Write: make value available on output bus.
- Ex. TOY-Lite program counter (4-bit).

Program Counter: Components

Components.

- Register.
- Incrementer.
- Multiplexer (to provide connections for both load and increment).

Datapath.

- Layout and interconnection of components.
- Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

Program Counter: Datapath and Control

Datapath.

- Layout and interconnection of components.
- Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

Program Counter: Datapath and Control

Datapath.

- Layout and interconnection of components.
- Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

25

Program Counter: Datapath and Control

Primary Components of Toy-Lite CPU

🗸 ALU

✓ Memory

✓ Toy-Lite Registers

Processor Registers: Program Counter and Instruction Register

"Control"

How To Design a Digital Device

How to design a digital device.

- Design interface: input buses, output buses, control wires.
- Determine components.
- Determine datapath requirements: "flow" of bits.
- Establish control sequence.

Warmup. Design a program counter (3 devices, 3 control wires).

Next. Design TOY-Lite computer (10 devices, 27 control wires).

TOY-Lite: Interface

CPU is a circuit.

Interface: switches and lights.

- set memory contents
- set PC value
- press RUN
- [details of connection to circuit omitted]

TOY-Lite: Components

TOY-Lite Datapath Requirements: Execute

Instructions determine datapaths and control sequences for execute

0	halt	
1	add	
2	subtract	IR opcode to control
3	and	control to ALU
4	xor	two registers to ALU
5	shift left	ALU to register MUX
6	shift right	
7	load address	
8	load	
9	store	
A	load indirect	
В	store indirect	
С	branch zero	
D	branch positive	
E	jump register	
F	jump and link	

TOY-Lite Datapath Requirements: Fetch

Basic machine operation is a cycle.

- Fetch
- Execute

Fetch.

- Memory[PC] to IR
- Increment PC

Execute.

• Datapath depends on instruction

TOY-Lite: Datapaths and Control

Datapath: Add

Datapath: Load

increment PC

Last step

Control. Each instruction corresponds to a sequence of control signals.

- Q. How do we create the sequence?
- A. Need a "physical" clock.

How much does it Hert?

Clock.

- Fundamental abstraction: regular on-off pulse.
 - -on: fetch phase
 - -off: execute phase
- "external" device.

Two-cycle design.

- fetch and clock

- execute and clock

- fetch

- execute

• Each control signal is in one of four epochs.

- Synchronizes operations of different circuit elements.
- Requirement: clock cycle longer than max switching time.

Frequency is inverse of cycle time.

- Expressed in hertz.
- Frequency of 1 Hz means that there is 1 cycle per second.
 - -1 kilohertz (kHz) means 1000 cycles/sec.
 - -1 megahertz (MHz) means 1 million cycles/sec.
 - 1 gigahertz (GHz) means 1 billion cycles/sec.
 - -1 terahertz (THz) means 1 trillion cycles/sec.

Clocking Methodology

[set memory address from pc]

[set ALU inputs from registers]

[write result of ALU to registers]

[write instruction to IR]

Heinrich Rudolf Hertz (1857-1894)

42

One Last Combinational Circuit: Control

data bus to memory input external clock just ticks CLOCK CONTROL 17. control lines to processor registers and ALU become hot in sequence determined by clock, opcode for H-FF onditional branches ┍┥┷╺╬┲┑ **F** 1 1 1 1 1 撛 撒胸휘휘휘휘 opcode from IR opcode decoder data bus control lines from ALU to ALU

Solution 3?

Fetch

X

etucete

Tick-Tock

CPU is a circuit, driven by a clock.

Switches initialize memory, PC contents

Clock ticks

- fetch instruction from memory[PC] to IR
- increment PC
- execute instruction

[details of instruction execution differ]

fetch next instruction

• ...

That's all there is to it!

TOY-Lite CPU

45

CONTROL CON

TOY "Classic", Back Of Envelope Design

Real Microprocessor (MIPS R10000)

History	+	Fut	ure
---------	---	-----	-----

Abstraction	Built From	Examples			
Abstract Switch	raw materials	transistor, relay			
Connector	raw materials	wire			
Clock	raw materials	crystal oscillator			
Logic Gates	abstract switches, connectors	AND, OR, NOT			
Combinational Circuit	logic gates, connectors	decoder, multiplexer, adder			
Sequential Circuit	logic gates, clock, connector	flip-flop			
Components	decoder, multiplexer, adder, flip-flop	registers, ALU, counter, control			
Computer	components	ТОУ			

Computer constructed by layering abstractions.

- Better implementation at low levels improves everything.
- Ongoing search for better abstract switch!

History.

- 1820s: mechanical switches.
- 1940s: relays, vacuum tubes.
- 1950s: transistor, core memory.
- 1960s: integrated circuit.
- 1970s: microprocessor.
- 1980s: VLSI.

- 1990s: integrated systems.
- 2000s: web computer.
- Future: quantum, optical soliton, ...

Ray Kurzweil http://en.wikipedia.org/wiki/Image:PPTMooresLawai.jpg