
Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • Copyright © 2008 • http://www.cs.Princeton.EDU/IntroCS

Designing a CPU

Let’s build a computer!

CPU: “central processing unit”

computer: CPU + display + optical disk + metal case + power supply + ...

Last lecture: circuit that implements an adder

This lecture: circuit that implements a CPU

2

the difference
between your computer

and a TV set

TOY Lite

TOY machine.
• 256 16-bit words of memory.
• 16 16-bit registers.
• 1 8-bit program counter.
• 2 instruction types
• 16 instructions.

TOY-Lite machine.
• 16 10-bit words of memory.
• 4 10-bit registers.
• 1 4-bit program counter.
• 2 instruction types
• 16 instructions.

3

Goal: CPU circuit for TOY-Lite (same design extends to TOY, your computer)

opcode

opcode

Rs Rd1 Rd2

opcode Rs addr

Rs

Rsopcode

Rd1 Rd2

addr

4 bits to specify
one of 16 memory words

2 bits to specify
one of 4 registers

8 bits to specify
one of 256 memory words

4 bits to specify
one of 16 registers

Primary Components of Toy-Lite CPU

! Arithmetic and Logic Unit (ALU)

 Memory

 Toy-Lite Registers

 Processor Registers: Program Counter and Instruction Register

 “Control”

4

5

B

A

A New Ingredient: Circuits With Memory

Combinational circuits.
•Output determined solely by inputs.
• Ex: majority, adder, decoder, MUX, ALU.

Sequential circuits.
•Output determined by inputs and current “state”.
• Ex: memory, program counter, CPU.

Ex. Simplest feedback loop.
• Two controlled switches A and B, both connected

to power, each blocked by the other.
• State determined by whichever switches first.
• Stable.

Aside. Feedback with an odd number of switches is a buzzer (not stable).
 Doorbell: buzzer made with relays.

6

SR Flip-Flop

SR Flip-flop.
• Two cross-coupled NOR gates
•A way to control the feedback loop.
•Abstraction that "remembers" one bit.
• Basic building block for memory and registers.

Caveat. Timing, switching delay.

x
OR

y

x + y

OR gate

x
NOR

y

(x + y)ʼ

NOR gate

write 0

memory bit

write 1

7

Memory Overview

Computers and TOY have several memory components.
• Program counter and other processor registers.
• TOY registers (4 10-bit words in Toy-Lite).
•Main memory (16 10-bit words in Toy-Lite).

Implementation.
•Use one flip-flop for each bit of memory.
•Use buses and multiplexers to group bits into words.

Access mechanism: when are contents available?
• Processor registers: enable write.
•Main memory: select and enable write.
• TOY register: dual select and enable write

need to be able to
read two registers at once

write 0

memory bit

write 1

read

8

Processor register Bit

Processor register bit. Extend a flip-flop to allow easy access to values.

write 1
when input is 1

AND
enable write is 1

write 0
when input is 0

AND
enable write is 1

9

Memory Bit Interface

Memory and TOY register bits: Add selection mechanism.

[TOY PC, IR] [TOY main memory] [TOY registers]

1-hot OR with
other values
[stay tuned]

10

Memory Bit: Switch Level Implementation

Memory and TOY register bits: Add selection mechanism.

[TOY PC, IR] [TOY main memory] [TOY registers]

AND gates
implement
selection

11

Processor Register

Processor register.
• Stores k bits.
• Register contents always available on output bus.
• If enable write is asserted, k input bits get copied into register.

Ex 1. TOY-Lite program counter (PC) holds 4-bit address.
Ex 2. TOY-Lite instruction register (IR) holds 10-bit current instruction.

don't confuse with TOY register

(4-bit)

12

Processor Register

Processor register.
• Stores k bits.
• Register contents always available on output bus.
• If enable write is asserted, k input bits get copied into register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit current instruction.

don't confuse with TOY register

13

Processor Register

Processor register.
• Stores k bits.
• Register contents always available on output bus.
• If enable write is asserted, k input bits get copied into register.

Ex 1. TOY program counter (PC) holds 8-bit address.
Ex 2. TOY instruction register (IR) holds 16-bit current instruction.

don't confuse with TOY register

(4-bit)

14

Memory Bank

Memory bank.
• Bank of n registers; each stores k bits.
• Read and write information to one of n registers.
•Address inputs specify which one.
•Addressed bits always appear on output.
• If write enabled, k input bits are copied into addressed register.

Ex 0 (for lecture). 4-by-6
 (four 6-bit words)

Ex 1. Main memory bank.
• TOY: 256-by-16
•TOY-Lite: 16-by-10

Ex 2. Registers.
• TOY: 16-by-16
•TOY Lite: 4-by-10
•Two output buses.

log2n address bits needed

15

Memory: Interface

(four 6-bit words)

2-bit

6-bit

6-bit

16

Memory: Component Level Implementation

Decoder plus memory selection: connect only to addressed word.

1-hot OR

only one of
these lines
is “hot” (1)

17

Memory: Switch Level Implementation

(four 6-bit words)

TOY-Lite Memory

16 10-bit words
• input connected to registers for “store”
• output connected to registers for “load”
• addr connect to processor Instruction Register (IR)

18

to registers (out)
to registers (in)

to IR

Another Useful Combinational Circuit: Multiplexer

Multiplexer (MUX). Combinational circuit that selects among input buses.
• Exactly one select line i is activated.
• Copies bits from input bus i to output bus.

19

exactly one of
these lines

is hot

Nuts and Bolts: Buses and Multiplexers

Multiplexer (MUX). Combinational circuit that selects among input buses.
• Exactly one select line i is activated.
• Copies bits from input bus i to output bus.

20

Toy-Lite Registers

4 10-bit words
•Dual-ported to support connecting two different registers to ALU
• Input MUX to support input connection to ALU, memory, IR, PC

21

to ALU (out)

to memory, IR

to ALU (in)

to PC

MUX select

Primary Components of Toy-Lite CPU

! ALU

! Memory

! Registers

! Processor Registers: Program Counter and Instruction Register

 “Control”

22

Not quite done.
Need to be able to increment.

23

How To Design a Digital Device

How to design a digital device.
• Design interface: input buses, output buses, control wires.
• Determine components.
• Determine datapath requirements: "flow" of bits.
• Establish control sequence.

Warmup. Design a program counter (3 devices, 3 control wires).

Goal. Design TOY-Lite computer (10 devices, 27 control wires).

24

Program Counter: Interface

Counter. Holds value that represents a binary number.
• Load: set value from input bus.
• Increment: add one to value.
• Enable Write: make value available on output bus.

Ex. TOY-Lite program counter (4-bit).

25

Program Counter: Components

Components.
• Register.
• Incrementer.
•Multiplexer (to provide connections for both load and increment).

26

Program Counter: Datapath and Control

Datapath.
• Layout and interconnection of components.
• Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

27

Program Counter: Datapath and Control

Datapath.
• Layout and interconnection of components.
• Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

28

Program Counter: Datapath and Control

Datapath.
• Layout and interconnection of components.
• Connect input and output buses.

Control. Choreographs the "flow" of information on the datapath.

29

Program Counter: Datapath and Control

2. enable write:
 register contents available on output

1. load:
 copy input to register

3. increment:
 output plus 1 available in MUX
 copy to register

4. enable write:
 register contents available on output

Primary Components of Toy-Lite CPU

! ALU

! Memory

! Toy-Lite Registers

! Processor Registers: Program Counter and Instruction Register

 “Control”

30

31

How To Design a Digital Device

How to design a digital device.
• Design interface: input buses, output buses, control wires.
• Determine components.
• Determine datapath requirements: "flow" of bits.
• Establish control sequence.

Warmup. Design a program counter (3 devices, 3 control wires).

Next. Design TOY-Lite computer (10 devices, 27 control wires).

TOY-Lite: Interface

CPU is a circuit.

Interface: switches and lights.
• set memory contents
• set PC value
• press RUN
• [details of connection to circuit omitted]

32

33

TOY-Lite: Components

34

TOY-Lite: Layout

TOY-Lite Datapath Requirements: Fetch

Basic machine operation is a cycle.
• Fetch
• Execute

Fetch.
•Memory[PC] to IR
• Increment PC

Execute.
•Datapath depends on instruction

35

Fetch

Execute

TOY-Lite Datapath Requirements: Execute

Instructions determine datapaths and control sequences for execute

36

. . .

0 halt . . .

1 add

IR opcode to control
control to ALU

two registers to ALU
ALU to register MUX

2 subtract IR opcode to control
control to ALU

two registers to ALU
ALU to register MUX

3 and
IR opcode to control

control to ALU
two registers to ALU
ALU to register MUX

4 xor

IR opcode to control
control to ALU

two registers to ALU
ALU to register MUX5 shift left

IR opcode to control
control to ALU

two registers to ALU
ALU to register MUX

6 shift right

IR opcode to control
control to ALU

two registers to ALU
ALU to register MUX

7 load address . . .

8 load . . .

9 store . . .

A load indirect . . .

B store indirect . . .

C branch zero

. . .
D branch positive

. . .
E jump register

. . .

F jump and link

. . .

37

TOY-Lite: Datapaths and Control

control wires

datapaths

38

Datapath: Add

execute:

fetch:

increment
IR opcode to control

control to ALU
two registers to ALU
ALU to register MUX

Memory[PC] to IR

increment PC

39

execute:

Datapath: Load

fetch:

increment

Memory[PC] to IR

increment PC

IR opcode to control
IR to addr MUX

memory to register MUX

40

Last step

Control. Each instruction corresponds to a sequence of control signals.

Q. How do we create the sequence?
A. Need a “physical” clock.

CPU CPU

clock

Solution 1: Use some other technology

Solution 2: Use a buzzer [need sufficiently long cycle to cover CPU switching]

41

Clock

Clock.
• Fundamental abstraction: regular on-off pulse.

– on: fetch phase
– off: execute phase

• “external” device.
• Synchronizes operations of different circuit elements.
• Requirement: clock cycle longer than max switching time.

cycle time

Clock

on

off

Solution 3?

42

How much does it Hert?

Frequency is inverse of cycle time.
n Expressed in hertz.
n Frequency of 1 Hz means that there is 1 cycle per second.

– 1 kilohertz (kHz) means 1000 cycles/sec.
– 1 megahertz (MHz) means 1 million cycles/sec.
– 1 gigahertz (GHz) means 1 billion cycles/sec.
– 1 terahertz (THz) means 1 trillion cycles/sec.

Heinrich Rudolf Hertz
(1857-1894)

43

Clocking Methodology

Two-cycle design.
• Each control signal is in one of four epochs.

– fetch [set memory address from pc]
– fetch and clock [write instruction to IR]
– execute [set ALU inputs from registers]
– execute and clock [write result of ALU to registers]

Fetch

Clock

Execute

Fetch

44

One Last Combinational Circuit: Control

data bus
to memory input

control lines
to ALU

opcode
from IR

control lines
to processor registers and ALU

become hot in sequence
determined

by clock, opcode

external clock just ticks

data bus
from ALU

Control. Circuit that determines control line sequencing.

opcode decoder

for
conditional
branches

Tick-Tock

CPU is a circuit, driven by a clock.

Switches initialize memory, PC contents

Clock ticks
• fetch instruction from memory[PC] to IR
• increment PC
• execute instruction

[details of instruction execution differ]

• fetch next instruction
• ...

That’s all there is to it!

45

Fetch

Execute

46

TOY "Classic", Back Of Envelope Design

47

TOY-Lite CPU

48

Real Microprocessor (MIPS R10000)

49

Layers of Abstraction

registers, ALU,
counter, control

decoder, multiplexer,
adder, flip-flopComponents

components

logic gates, clock,
connector

logic gates, connectors

abstract switches,
connectors

raw materials

raw materials

raw materials

Built From

decoder, multiplexer,
adderCombinational Circuit

flip-flopSequential Circuit

TOYComputer

crystal oscillatorClock

AND, OR, NOTLogic Gates

wireConnector

transistor, relayAbstract Switch

Abstraction Examples

50

History + Future

Computer constructed by layering abstractions.
• Better implementation at low levels improves everything.
•Ongoing search for better abstract switch!

History.
• 1820s: mechanical switches.
• 1940s: relays, vacuum tubes.
• 1950s: transistor, core memory.
• 1960s: integrated circuit.
• 1970s: microprocessor.
• 1980s: VLSI.
• 1990s: integrated systems.
• 2000s: web computer.
• Future: quantum, optical soliton, …

Ray Kurzweil
http://en.wikipedia.org/wiki/Image:PPTMooresLawai.jpg

