
1 Introduction to Computer Science • Sedgewick and Wayne • Copyright © 2007 • http://www.cs.Princeton.EDU/IntroCS

TOY II

LINC

3

What We've Learned About TOY

Data representation. Binary and hex.

TOY.
• Box with switches and lights.
• 16-bit memory locations, 16-bit registers, 8-bit pc.
• 4,328 bits = (255 ! 16) + (15 ! 16) + (8) = 541 bytes!
• von Neumann architecture.

TOY instruction set architecture. 16 instruction types.
TOY machine language programs. Variables, arithmetic, loops.

4

What We Do Today

Data representation. Negative numbers.

Input and output. Standard input, standard output.

Manipulate addresses. References (pointers) and arrays.

TOY simulator in Java and implications.

5

Data Representation

6

Digital World

Data is a sequence of bits. (interpreted in different ways)
• Integers, real numbers, characters, strings, …
• Documents, pictures, sounds, movies, Java programs, …

Ex. 01110101
• As binary integer: 1 + 4 + 16 + 32 + 64 = 117 (base ten).
• As character: 117th Unicode character = 'u'.
• As music: 117/256 position of speaker.
• As grayscale value: 45.7% black.

7

Decimal and binary addition.

Subtraction. Add a negative integer.

Q. How to represent negative integers?

 1 1 1
 013 0 0 0 0 1 1 0 1
+ 092 + 0 1 0 1 1 1 0 0
 105 0 1 1 0 1 0 0 1

Adding and Subtracting Binary Numbers

carries

e.g., 6 - 4 = 6 + (-4))

8

Representing Negative Integers

TOY words are 16 bits each.
• We could use 16 bits to represent 0 to 216 - 1.
• We want negative integers too.
• Reserving half the possible bit-patterns for negative seems fair.

Highly desirable property. If x is an integer, then the representation of -x,
when added to x, is zero.

 x 0 0 1 1 0 1 0 0
+(-x) + ? ? ? ? ? ? ? ?
 0 0 0 0 0 0 0 0 0

 x 0 0 1 1 0 1 0 0
 + 1 1 0 0 1 0 1 1
+(-x) 1 1 1 1 1 1 1 1
 + 1
 0 0 0 0 0 0 0 0 0

-x: flip bits and add 1

9

-5

-4

1 1 1 11 1 1 ?1 1 1 1 1 11 01

1 1 1 11 1 1 ?1 1 1 1 0 01 11

0 0 0 00 0 0 ?0 0 0 0 0 00 10+4

Two's Complement Integers

To compute -x from x:

• Start with x.

• Flip bits.

• Add one.

leading bit determines sign

10

Two's Complement Integers

1 1 1 10 1 1 ?1 1 1 1 1 11 11

13 12 11 1015 14 79 8 6 4 1 03 25

0 0 0 00 0 0 ?0 0 0 0 0 00 10

0 0 0 00 0 0 ?0 0 0 0 1 10 00

0 0 0 00 0 0 ?0 0 0 0 1 00 00

0 0 0 00 0 0 ?0 0 0 0 0 10 00

0 0 0 00 0 0 ?0 0 0 0 0 00 00

1 1 1 11 1 1 ?1 1 1 1 1 11 11

1 1 1 11 1 1 ?1 1 1 1 1 01 11

1 1 1 11 1 1 ?1 1 1 1 0 11 11

1 1 1 11 1 1 ?1 1 1 1 0 01 11

0 0 0 01 0 0 ?0 0 0 0 0 00 00

7FFF

0004

0003

0002

0001

0000

FFFF

FFFE

FFFD

FFFC

8000

+32767

+4

+3

+2

+1

+0

-1

-2

-3

-4

-32768

hexdec binary

11

Properties of Two's Complement Integers

Properties.
• Leading bit (bit 15) signifies sign.
• 0000000000000000 represents zero.
• Negative integer -x represented by 216 - x.
• Addition is easy.
• Checking for arithmetic overflow is easy.

Not-so-nice property. Can represent one more negative integer
than positive integer.

Remark. Java int data type is 32-bit two's complement integer.

-32,768 = -215

32,767 = 215-1

11

http://xkcd.com/571/

13

Representing Other Primitive Data Types in TOY

Bigger integers. Use two 16-bit words per int.

Real numbers.
• Use "floating point" (like scientific notation).
• Use four 16-bit words per double.

Characters.
• Use ASCII code (8 bits / character).
• Pack two characters per 16-bit word.

Note. Real microprocessors add hardware support for int and double.

14

Standard Input and Output

15

Standard Output

Standard output.
• Writing to memory location FF sends one word to TOY stdout.
• Ex. 9AFF writes the integer in register A to stdout.

00: 0000 0
01: 0001 1

10: 8A00 RA ! mem[00] a = 0
11: 8B01 RB ! mem[01] b = 1

 do {
12: 9AFF write RA to stdout print a
13: 1AAB RA ! RA + RB a = a + b
14: 2BAB RB ! RA - RB b = a - b
15: DA12 if (RA > 0) goto 12 } while (a > 0)
16: 0000 halt

0000
0001
0001
0002
0003
0005
0008
000D
0015
0022
0037
0059
0090
00E9
0179
0262
03DB
063D
0A18
1055
1A6D
2AC2
452F
6FF1

fibonacci.toy

standard
output

16

Standard Input

Standard input.
• Loading from memory address FF loads one word from TOY stdin.
• Ex. 8AFF reads an integer from stdin and store it in register A.

Ex: read in a sequence of integers and print their sum.
• In Java, stop reading when EOF.
• In TOY, stop reading when user enters 0000.

while (!StdIn.isEmpty()) {
 a = StdIn.readInt();
 sum = sum + a;
}
StdOut.println(sum);

00: 0000 0

10: 8C00 RC <- mem[00]
11: 8AFF read RA from stdin
12: CA15 if (RA == 0) pc ! 15
13: 1CCA RC ! RC + RA
14: C011 pc ! 11
15: 9CFF write RC
16: 0000 halt

00AE
0046
0003
0000
00F7

17

Standard Input and Output: Implications

Standard input and output enable you to:
• Get information out of machine.
• Put information from real world into machine.
• Process more information than fits in memory.
• Interact with the computer while it is running.

TEQ on TOY 3

What does the following TOY program do?

18

10: 7C0A
11: 7101
12: 7201
13: 92FF
14: 5221
15: 2CC1
16: DC13
17: 0000

19

Pointers

20

addr

Load Address (a.k.a. Load Constant)

Load address. [opcode 7]
• Loads an 8-bit integer into a register.
• 7A30 means load the value 30 into register A.

Applications.
• Load a small constant into a register.
• Load an 8-bit memory address into a register.

1

13

1

12

1

11

0

10

0

15

1

14

0

7

?

6

1

9

0

8

0

6

1

4

0

1

0

0

0

3

0

2

1

5

716 A16 316 016

opcode dest d

a = 0x30;

Java code

register stores "pointer" to a memory cell

21

Arrays in TOY

TOY main memory is a giant array.
• Can access memory cell 30 using load and store.
• 8C30 means load mem[30] into register C.
• Goal: access memory cell i where i is a variable.

Load indirect. [opcode A]
• AC06 means load mem[R6] into register C.

Store indirect. [opcode B]
• BC06 means store contents of register C into mem[R6].

for (int i = 0; i < N; i++)
 a[i] = StdIn.readInt();

for (int i = 0; i < N; i++)
 StdOut.println(a[N-i-1]);

a variable index

a variable index

30

31

32

33

34

35

36

37

…

…

0000

0001

0001

0002

0003

0005

0008

000D

…

…

TOY memory

22

TOY Implementation of Reverse

TOY implementation of reverse.
• Read in a sequence of integers and store in memory 30, 31, 32, …
• Stop reading if 0000.
• Print sequence in reverse order.

10: 7101 R1 ! 0001 constant 1
11: 7A30 RA ! 0030 a[]
12: 7B00 RB ! 0000 n

 while(true) {
13: 8CFF read RC c = StdIn.readInt();
14: CC19 if (RC == 0) goto 19 if (c == 0) break;
15: 16AB R6 ! RA + RB memory address of a[n]
16: BC06 mem[R6] ! RC a[n] = c;
17: 1BB1 RB ! RB + R1 n++;
18: C013 goto 13 }

read in the data

23

TOY Implementation of Reverse

TOY implementation of reverse.
• Read in a sequence of integers and store in memory 30, 31, 32, …
• Stop reading if 0000.
• Print sequence in reverse order.

10: 7101 R1 ! 0001 constant 1
11: 7A30 RA ! 0030 a[]
12: 7B00 RB ! 0000 n

 while(true) {
13: 8CFF read RC c = StdIn.readInt();
14: CC19 if (RC == 0) goto 19 if (c == 0) break;
15: 16AB R6 ! RA + RB memory address of a[n]
16: BC06 mem[R6] ! RC a[n] = c;
17: 1BB1 RB ! RB + R1 n++;
18: C013 goto 13 }

print in reverse order

24

Unsafe Code at any Speed

Q. What happens if we make array start at 00 instead of 30?

A. With enough data, becomes a self-modifying program
• can overflow buffer
• and run arbitrary code!

10: 7101 R1 ! 0001 constant 1
11: 7A00 RA ! 0000 a[]
12: 7B00 RB ! 0000 n

 while(true) {
13: 8CFF read RC c = StdIn.readInt();
14: CC19 if (RC == 0) goto 19 if (c == 0) break;
15: 16AB R6 ! RA + RB address of a[n]
16: BC06 mem[R6] ! RC a[n] = c;
17: 1BB1 RB ! RB + R1 n++;
18: C013 goto 13 }

% more crazy8.txt
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
8888 8810
98FF C011

25

Buffer overrun.
• Array buffer[] has size 100.
• User might enter 200 characters.
• Might lose control of machine behavior.

Consequences. Viruses and worms.

What Can Happen When We Lose Control (in C or C++)?

#include <stdio.h>
int main(void) {
 char buffer[100];
 scanf("%s", buffer);
 printf("%s\n", buffer);
 return 0;
}

unsafe C program

26

Buffer overrun.
• Array buffer[] has size 100.
• User might enter 200 characters.
• Might lose control of machine behavior.

Consequences. Viruses and worms.

Java enforces security.
• Type safety.
• Array bounds checking.
• Not foolproof.

What Can Happen When We Lose Control (in C or C++)?

#include <stdio.h>
int main(void) {
 char buffer[100];
 scanf("%s", buffer);
 printf("%s\n", buffer);
 return 0;
}

unsafe C program

shine 50W bulb at DRAM
[Appel-Govindavajhala '03]

27

Buffer Overrun Example: JPEG of Death

Microsoft Windows JPEG bug. [September, 2004]
• Step 1. User views malicious JPEG in IE or Outlook.
• Step 2. Machine is 0wned.
• Data becomes code by exploiting buffer overrun in GDI+ library.

Fix. Update old library with patched one.

Moral.
• Not easy to write error-free software.
• Embrace Java security features.
• Don't try to maintain several copies of the same file.
• Keep your OS patched.

but many applications install independent copies of GDI library

28

Q. Work all day to develop operating system. How to save it?

A. Write short program dump.toy and run it to dump contents of memory
onto tape.

Dumping

00: 7001 R1 ! 0001
01: 7210 R2 ! 0010 i = 10
02: 73FF R3 ! 00FF
 do {
03: AA02 RA ! mem[R2] a = mem[i]
04: 9AFF write RA print a
05: 1221 R2 ! R2 + R1 i++
06: 2432 R4 ! R3 - R2
07: D403 if (R4 > 0) goto 03 } while (i < 255)
08: 0000 halt

dump.toy

29

Q. How do you get it back?

A. Write short program boot.toy and run it to read contents of memory
from tape.

Booting

00: 7001 R1 ! 0001
01: 7210 R2 ! 0010 i = 10
02: 73FF R3 ! 00FF
 do {
03: 8AFF read RA read a
04: BA02 mem[R2] ! RA mem[i] = a
05: 1221 R2 ! R2 + R1 i++
06: 2432 R4 ! R3 - R2
07: D403 if (R4 > 0) goto 03 } while (i < 255)
08: 0000 halt

boot.toy

30

Simulating the TOY machine

31

TOY Simulator

Goal. Write a program to "simulate" the behavior of the TOY machine.
• TOY simulator in Java.
• TOY simulator in TOY!

public class TOY
{
 public static void main(String[] args)
 {
 int pc = 0x10; // program counter
 int[] R = new int[16]; // registers
 int[] mem = new int[256]; // main memory

 // READ .toy FILE into mem[10..]

 while (true)
 {
 int inst = mem[pc++]; // fetch and increment
 // DECODE
 // EXECUTE
 }
 }
}

% more add-stdin.toy
8C00
8AFF
CA15
1CCA
C011
9CFF
0000

% java TOY add-stdin.toy
00AE
0046
0003
0000
00F7 standard output

standard input

TOY program to load at 10

32

TOY Simulator: Fetch

Ex. Extract destination register of 1CAB by shifting and masking.

int inst = mem[pc++]; // fetch and increment
int op = (inst >> 12) & 15; // opcode (bits 12-15)
int d = (inst >> 8) & 15; // dest d (bits 08-11)
int s = (inst >> 4) & 15; // source s (bits 04-07)
int t = (inst >> 0) & 15; // source t (bits 00-03)
int addr = (inst >> 0) & 255; // addr (bits 00-07)

0 1 1 10 0 10 0 0 0 1 11 01

116 C16 A16 B16

0 0 0 00 0 00 0 0 1 0 01 10

016 016 1 C16

inst

inst >> 8

0 0 0 00 0 00 0 0 0 1 11 10

016 016 016 F16

0 0 0 00 0 00 0 0 0 0 01 10

016 016 0 C16

15

(inst >> 8) & 15

33

TOY Simulator: Execute

if (op == 0) break; // halt

switch (op)
{
 case 1: R[d] = R[s] + R[t]; break;
 case 2: R[d] = R[s] - R[t]; break;
 case 3: R[d] = R[s] & R[t]; break;
 case 4: R[d] = R[s] ^ R[t]; break;
 case 5: R[d] = R[s] << R[t]; break;
 case 6: R[d] = R[s] >> R[t]; break;
 case 7: R[d] = addr; break;
 case 8: R[d] = mem[addr]; break;
 case 9: mem[addr] = R[d]; break;
 case 10: R[d] = mem[R[t]]; break;
 case 11: mem[R[t]] = R[d]; break;
 case 12: if (R[d] == 0) pc = addr; break;
 case 13: if (R[d] > 0) pc = addr; break;
 case 14: pc = R[d]; pc; pc = addr; break;
 case 15: R[d] = pc; pc = addr; break;
}

34

TOY Simulator: Omitted Details

Omitted details.

• Register 0 is always 0.
– reset R[0]=0 after each fetch-execute step

• Standard input and output.
– if addr is FF and opcode is load (indirect) then read in data
– if addr is FF and opcode is store (indirect) then write out data

• TOY registers are 16-bit integers; program counter is 8-bit.
– Java int is 32-bit; Java short is 16-bit
– use casts and bit-whacking

Complete implementation. See TOY.java on booksite.

35

Simulation

Important ideas stemming from simulation.
• Backwards compatiblity
• Virtual machines
• Layers of abstraction

Backwards Compatibility

Building a new computer? Need a plan for old software.

Two possible approaches
• Rewrite software (costly, error-prone, boring, and time-consuming).
• Simulate old computer on new computer.

Ancient programs still running on modern computers.
• Payroll
• Power plants
• Air traffic control
• Ticketron.
• Games.

36

 Apple IIeLode Runner Mac OS X Apple IIe emulator widget
running Lode Runner

37

Backwards Compatibility

Q. Why is standard US rail gauge 4 feet, 8.5 inches?

A. Same spacing as wheel ruts on old English roads.

Q. Why is wheel rut spacing 4 feet, 8.5 inches?

A. For Roman war chariots.

Q. Why is war chariot rut spacing 4 feet, 8.5 inches?

A. Fits "back ends" of two war horses!

Q. Why is Space Shuttle SRB long and narrow?

A. Fits on standard US rail guage.

 . . .

A. Fits "back ends" of two war horses!

38

Effects of Backwards Compatibility: example 1

39

Effects of Backwards Compatibility: Example 2

Napoleon's march on Russia.
• Progress slower than expected.
• Eastern European ruts didn't match Roman gauge.
• Stuck in the field during Russian winter instead of Moscow.
• Lost war.

Lessons.
• Maintaining backwards compatibility can lead to inelegance and inefficiency.
• Maintaining backwards compatibility is Not Always A Good Thing.
• May need fresh ideas to conquer civilized world.

Virtual machines

Building a new rocket? Simulate it to test it.
• Issue 1: Simulation may not reflect reality.
• Issue 2: May not be able to afford simulation.

Building a new computer? Simulate it to test it.
• Advantage 1: Simulation is reality (it defines the new machine).
• Advantage 2: Can develop software without having machine.
• Advantage 3: Can simulate machines you wouldn’t build.

40

Example 1: Operating systems implement Virtual Memories that are much larger than real
memories by simulating programs and going to disk or the web to reference “memory”

Example 2: Operating systems implement multiple Virtual Machines on a single real machine
by keeping track of multiple PCs and rotating control to the different machines

Example 3: The Java Virtual Machine provides machine independence for Java programs.
It is simulated on the real machine (PC, cellphone, toaster) you happen to be using.

Example 4: The Amazon Virtual Computing Environment provides “computing in the cloud”.
It gives the illusion that your device has the power of a web server farm.

Layers of Abstraction

Is TOY real?

Is Java real?

Approaching a new problem?
• build an (abstract) language for expressing solutions
• design an (abstract) machine to execute the language
• food for thought: Why build the machine? [instead, simulate it!]

41

Examples: MATLAB, BLAST, AMP

Instruction set architecture

Java language specification

machine

programmer

Java virtual machine

