
1 Introduction to Computer Science   •   Sedgewick and Wayne   •   Copyright © 2007   •   http://www.cs.Princeton.EDU/IntroCS

TOY II

LINC

3

What We've Learned About TOY

Data representation.  Binary and hex.

TOY.
• Box with switches and lights.
• 16-bit memory locations, 16-bit registers, 8-bit pc.
• 4,328 bits  =  (255 ! 16)  +  (15 ! 16)  + (8)  =  541 bytes!
• von Neumann architecture.

TOY instruction set architecture.  16 instruction types.
TOY machine language programs.  Variables, arithmetic, loops.
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What We Do Today

Data representation.  Negative numbers.

Input and output.  Standard input, standard output.

Manipulate addresses.  References (pointers) and arrays.

TOY simulator in Java and implications.
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Data Representation
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Digital World

Data is a sequence of bits.  (interpreted in different ways)
• Integers, real numbers, characters, strings, …
• Documents, pictures, sounds, movies, Java programs, …

Ex.   01110101
• As binary integer:  1 + 4 + 16 + 32 + 64 = 117 (base ten). 
• As character: 117th Unicode character = 'u'.
• As music:  117/256 position of speaker.
• As grayscale value: 45.7% black.
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Decimal and binary addition.

Subtraction.  Add a negative integer.

Q.  How to represent negative integers?

    1               1 1 
  013            0 0 0 0 1 1 0 1
+ 092          + 0 1 0 1 1 1 0 0
  105            0 1 1 0 1 0 0 1

Adding and Subtracting Binary Numbers

carries

e.g., 6 - 4 = 6 + (-4))
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Representing Negative Integers

TOY words are 16 bits each.
• We could use 16 bits to represent 0 to 216 - 1.
• We want negative integers too.
• Reserving half the possible bit-patterns for negative seems fair.

Highly desirable property.  If x is an integer, then the representation of -x, 
when added to x, is zero.

   x     0 0 1 1 0 1 0 0
+(-x)   + ? ? ? ? ? ? ? ?
   0     0 0 0 0 0 0 0 0

   x     0 0 1 1 0 1 0 0
       + 1 1 0 0 1 0 1 1
+(-x)     1 1 1 1 1 1 1 1
        +               1
   0     0 0 0 0 0 0 0 0  

-x: flip bits and add 1
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-5

-4

1 1 1 11 1 1 ?1 1 1 1 1 11 01

1 1 1 11 1 1 ?1 1 1 1 0 01 11

0 0 0 00 0 0 ?0 0 0 0 0 00 10+4

Two's Complement Integers

To compute -x from x:

• Start with x. 

• Flip bits.

• Add one.

leading bit determines sign
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Two's Complement Integers

1 1 1 10 1 1 ?1 1 1 1 1 11 11

13 12 11 1015 14 79 8 6 4 1 03 25

0 0 0 00 0 0 ?0 0 0 0 0 00 10

0 0 0 00 0 0 ?0 0 0 0 1 10 00

0 0 0 00 0 0 ?0 0 0 0 1 00 00

0 0 0 00 0 0 ?0 0 0 0 0 10 00

0 0 0 00 0 0 ?0 0 0 0 0 00 00

1 1 1 11 1 1 ?1 1 1 1 1 11 11

1 1 1 11 1 1 ?1 1 1 1 1 01 11

1 1 1 11 1 1 ?1 1 1 1 0 11 11

1 1 1 11 1 1 ?1 1 1 1 0 01 11

0 0 0 01 0 0 ?0 0 0 0 0 00 00

7FFF

0004

0003

0002

0001

0000

FFFF

FFFE

FFFD

FFFC

8000

+32767

+4

+3

+2

+1

+0

-1

-2

-3

-4

-32768

hexdec binary
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Properties of Two's Complement Integers

Properties.
• Leading bit (bit 15) signifies sign.
• 0000000000000000 represents zero.
• Negative integer -x represented by 216 - x.
• Addition is easy.
• Checking for arithmetic overflow is easy.

Not-so-nice property.  Can represent one more negative integer
than positive integer.

Remark.  Java int data type is 32-bit two's complement integer.

-32,768 = -215

32,767 = 215-1
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http://xkcd.com/571/
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Representing Other Primitive Data Types in TOY

Bigger integers.  Use two 16-bit words per int.

Real numbers.
• Use "floating point"  (like scientific notation).
• Use four 16-bit words per double.

Characters.
• Use ASCII code (8 bits / character).
• Pack two characters per 16-bit word.

Note.  Real microprocessors add hardware support for int and double.
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Standard Input and Output

15

Standard Output

Standard output.
• Writing to memory location FF sends one word to TOY stdout.
• Ex.  9AFF writes the integer in register A to stdout.

00: 0000   0
01: 0001   1

10: 8A00   RA ! mem[00]          a = 0
11: 8B01   RB ! mem[01]          b = 1

                             do {
12: 9AFF   write RA to stdout        print a
13: 1AAB   RA ! RA + RB              a = a + b
14: 2BAB   RB ! RA - RB              b = a - b
15: DA12   if (RA > 0) goto 12    } while (a > 0)
16: 0000   halt

0000
0001
0001
0002
0003
0005
0008
000D
0015
0022
0037
0059
0090
00E9
0179
0262
03DB
063D
0A18
1055
1A6D
2AC2
452F
6FF1

fibonacci.toy

standard
output
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Standard Input

Standard input.
• Loading from memory address FF loads one word from TOY stdin.
• Ex.  8AFF reads an integer from stdin and store it in register A.

Ex:  read in a sequence of integers and print their sum.
• In Java, stop reading when EOF.
• In TOY, stop reading when user enters 0000.

while (!StdIn.isEmpty()) {
   a = StdIn.readInt();
   sum = sum + a;
}
StdOut.println(sum); 

00: 0000   0

10: 8C00   RC <- mem[00] 
11: 8AFF   read RA from stdin
12: CA15   if (RA == 0) pc ! 15
13: 1CCA   RC ! RC + RA
14: C011   pc ! 11     
15: 9CFF   write RC
16: 0000   halt

00AE
0046
0003
0000
00F7
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Standard Input and Output:  Implications

Standard input and output enable you to:
• Get information out of machine.
• Put information from real world into machine.
• Process more information than fits in memory.
• Interact with the computer while it is running.

TEQ on TOY 3

What does the following TOY program do? 
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10: 7C0A
11: 7101
12: 7201
13: 92FF
14: 5221
15: 2CC1
16: DC13
17: 0000
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Pointers
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addr

Load Address (a.k.a. Load Constant)

Load address.  [opcode  7]
• Loads an 8-bit integer into a register.
• 7A30 means load the value 30 into register A.

Applications.
• Load a small constant into a register.
• Load an 8-bit memory address into a register.

1

13

1

12

1

11

0

10

0

15

1

14

0

7

?

6

1

9

0

8

0

6

1

4

0

1

0

0

0

3

0

2

1

5

716 A16 316 016

opcode dest d

a = 0x30;

Java code

register stores "pointer" to a memory cell
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Arrays in TOY

TOY main memory is a giant array.
• Can access memory cell 30 using load and store.
• 8C30 means load  mem[30] into register C.
• Goal:  access memory cell i where i is a variable.

Load indirect.  [opcode  A]
• AC06 means load mem[R6] into register C.

Store indirect.  [opcode  B]
• BC06 means store contents of register C into  mem[R6].

for (int i = 0; i < N; i++)
   a[i] = StdIn.readInt();

for (int i = 0; i < N; i++)
   StdOut.println(a[N-i-1]);

a variable index

a variable index

30

31

32

33

34

35

36

37

…

…

0000

0001

0001

0002

0003

0005

0008

000D

…

…

TOY memory

22

TOY Implementation of Reverse

TOY implementation of reverse.
• Read in a sequence of integers and store in memory 30, 31, 32, …
• Stop reading if 0000. 
• Print sequence in reverse order.

10: 7101  R1 ! 0001      constant 1
11: 7A30  RA ! 0030      a[]
12: 7B00  RB ! 0000      n

     while(true) {
13: 8CFF  read RC      c = StdIn.readInt();
14: CC19  if (RC == 0) goto 19            if (c == 0) break;
15: 16AB  R6 ! RA + RB             memory address of a[n]
16: BC06  mem[R6] ! RC             a[n] = c;
17: 1BB1  RB ! RB + R1      n++;
18: C013  goto 13   }

read in the data
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TOY Implementation of Reverse

TOY implementation of reverse.
• Read in a sequence of integers and store in memory 30, 31, 32, …
• Stop reading if 0000. 
• Print sequence in reverse order.

10: 7101  R1 ! 0001      constant 1
11: 7A30  RA ! 0030      a[]
12: 7B00  RB ! 0000      n

     while(true) {
13: 8CFF  read RC      c = StdIn.readInt();
14: CC19  if (RC == 0) goto 19            if (c == 0) break;
15: 16AB  R6 ! RA + RB             memory address of a[n]
16: BC06  mem[R6] ! RC             a[n] = c;
17: 1BB1  RB ! RB + R1      n++;
18: C013  goto 13   }

print in reverse order
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Unsafe Code at any Speed

Q.  What happens if we make array start at 00 instead of 30?

A.  With enough data, becomes a self-modifying program
• can overflow buffer
• and run arbitrary code!

10: 7101  R1 ! 0001          constant 1
11: 7A00  RA ! 0000          a[]
12: 7B00  RB ! 0000          n

            while(true) {
13: 8CFF  read RC            c = StdIn.readInt();
14: CC19  if (RC == 0) goto 19    if (c == 0) break;
15: 16AB  R6 ! RA + RB     address of a[n]
16: BC06  mem[R6] ! RC     a[n] = c;
17: 1BB1  RB ! RB + R1      n++;
18: C013  goto 13   }

% more crazy8.txt
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
8888 8810
98FF C011
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Buffer overrun.
• Array buffer[] has size 100.
• User might enter 200 characters.
• Might lose control of machine behavior.

Consequences.  Viruses and worms.

What Can Happen When We Lose Control (in C or C++)?

#include <stdio.h>
int main(void) {
   char buffer[100];
   scanf("%s", buffer);
   printf("%s\n", buffer);
   return 0;
}

unsafe C program
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Buffer overrun.
• Array buffer[] has size 100.
• User might enter 200 characters.
• Might lose control of machine behavior.

Consequences.  Viruses and worms.

Java enforces security.
• Type safety.
• Array bounds checking.
• Not foolproof. 

What Can Happen When We Lose Control (in C or C++)?

#include <stdio.h>
int main(void) {
   char buffer[100];
   scanf("%s", buffer);
   printf("%s\n", buffer);
   return 0;
}

unsafe C program

shine 50W bulb at DRAM
[Appel-Govindavajhala '03]
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Buffer Overrun Example:  JPEG of Death

Microsoft Windows JPEG bug.  [September, 2004]
• Step 1.  User views malicious JPEG in IE or Outlook.
• Step 2.  Machine is 0wned.
• Data becomes code by exploiting buffer overrun in GDI+ library.

Fix.  Update old library with patched one.

Moral.
• Not easy to write error-free software.
• Embrace Java security features.
• Don't try to maintain several copies of the same file.
• Keep your OS patched.

but many applications install independent copies of GDI library
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Q.  Work all day to develop operating system.  How to save it?

A.  Write short program dump.toy and run it to dump contents of memory 
onto tape.

Dumping

00: 7001   R1 ! 0001                   
01: 7210   R2 ! 0010   i = 10
02: 73FF   R3 ! 00FF
          do {
03: AA02   RA ! mem[R2]     a = mem[i]
04: 9AFF   write RA           print a
05: 1221   R2 ! R2 + R1      i++
06: 2432   R4 ! R3 - R2 
07: D403   if (R4 > 0) goto 03 } while (i < 255)
08: 0000   halt

dump.toy
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Q.  How do you get it back?

A.  Write short program boot.toy and run it to read contents of memory 
from tape.

Booting

00: 7001   R1 ! 0001                   
01: 7210   R2 ! 0010   i = 10
02: 73FF   R3 ! 00FF
          do {
03: 8AFF   read RA        read a
04: BA02   mem[R2] ! RA      mem[i] = a
05: 1221   R2 ! R2 + R1      i++
06: 2432   R4 ! R3 - R2 
07: D403   if (R4 > 0) goto 03 } while (i < 255)
08: 0000   halt

boot.toy
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Simulating the TOY machine
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TOY Simulator

Goal.  Write a program to "simulate" the behavior of the TOY machine.
• TOY simulator in Java.
• TOY simulator in TOY!

public class TOY
{
   public static void main(String[] args)
   {
      int pc    = 0x10;         // program counter
      int[] R   = new int[16];  // registers
      int[] mem = new int[256]; // main memory

      // READ .toy FILE into mem[10..]

      while (true)
      {
         int inst = mem[pc++];  // fetch and increment
         // DECODE
         // EXECUTE
      }
   }
}

% more add-stdin.toy
8C00
8AFF
CA15
1CCA
C011
9CFF
0000

% java TOY add-stdin.toy
00AE
0046
0003
0000
00F7 standard output

standard input

TOY program to load at 10
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TOY Simulator:  Fetch

Ex.  Extract destination register of 1CAB by shifting and masking.

int inst = mem[pc++];           // fetch and increment
int op   = (inst >> 12) &  15;  // opcode   (bits 12-15)
int d    = (inst >>  8) &  15;  // dest d   (bits 08-11)
int s    = (inst >>  4) &  15;  // source s (bits 04-07)
int t    = (inst >>  0) &  15;  // source t (bits 00-03)
int addr = (inst >>  0) & 255;  // addr     (bits 00-07)

0 1 1 10 0 10 0 0 0 1 11 01

116 C16 A16 B16

0 0 0 00 0 00 0 0 1 0 01 10

016 016 1 C16

inst

inst >> 8

0 0 0 00 0 00 0 0 0 1 11 10

016 016 016 F16

0 0 0 00 0 00 0 0 0 0 01 10

016 016 0 C16

15

(inst >> 8) & 15
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TOY Simulator:  Execute

if (op == 0) break;       // halt 

switch (op)
{
   case  1: R[d] = R[s] +  R[t];      break;
   case  2: R[d] = R[s] -  R[t];      break;
   case  3: R[d] = R[s] &  R[t];      break;
   case  4: R[d] = R[s] ^  R[t];      break;
   case  5: R[d] = R[s] << R[t];      break;
   case  6: R[d] = R[s] >> R[t];      break;
   case  7: R[d] = addr;              break;
   case  8: R[d] = mem[addr];         break;
   case  9: mem[addr] = R[d];         break;
   case 10: R[d] = mem[R[t]];         break;
   case 11: mem[R[t]] = R[d];         break;
   case 12: if (R[d] == 0) pc = addr; break;
   case 13: if (R[d] >  0) pc = addr; break;
   case 14: pc = R[d]; pc; pc = addr; break;
   case 15: R[d] = pc; pc = addr;     break;
} 
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TOY Simulator:  Omitted Details

Omitted details.

• Register 0 is always 0.
– reset R[0]=0 after each fetch-execute step

• Standard input and output.
– if addr is FF and opcode is load (indirect) then read in data
– if addr is FF and opcode is store (indirect) then write out data

• TOY registers are 16-bit integers; program counter is 8-bit.
– Java int is 32-bit; Java short is 16-bit
– use casts and bit-whacking 

Complete implementation.  See TOY.java on booksite.
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Simulation

Important ideas stemming from simulation.
• Backwards compatiblity
• Virtual machines
• Layers of abstraction

 

Backwards Compatibility

Building a new computer? Need a plan for old software.

Two possible approaches
• Rewrite software (costly, error-prone, boring, and time-consuming).
• Simulate old computer on new computer.

Ancient programs still running on modern computers.
• Payroll
• Power plants
• Air traffic control
• Ticketron.
• Games.
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 Apple IIeLode Runner Mac OS X Apple IIe emulator widget 
running Lode Runner
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Backwards Compatibility

Q.  Why is standard US rail gauge 4 feet, 8.5 inches?

A.  Same spacing as wheel ruts on old English roads.

Q.  Why is wheel rut spacing 4 feet, 8.5 inches?

A.  For Roman war chariots.

Q.  Why is war chariot rut spacing 4 feet, 8.5 inches?

A.  Fits "back ends" of two war horses!

Q.  Why is Space Shuttle SRB long and narrow?

A.  Fits on standard US rail guage.

     . . .

A.  Fits "back ends" of two war horses!
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Effects of Backwards Compatibility: example 1

39

Effects of Backwards Compatibility: Example 2

Napoleon's march on Russia.
• Progress slower than expected.
• Eastern European ruts didn't match Roman gauge.
• Stuck in the field during Russian winter instead of Moscow.
• Lost war.

Lessons.
• Maintaining backwards compatibility can lead to inelegance and inefficiency.
• Maintaining backwards compatibility is Not Always A Good Thing.
• May need fresh ideas to conquer civilized world.

Virtual machines

Building a new rocket? Simulate it to test it.
• Issue 1: Simulation may not reflect reality.
• Issue 2: May not be able to afford simulation.

Building a new computer? Simulate it to test it.
• Advantage 1: Simulation is reality (it defines the new machine).
• Advantage 2: Can develop software without having machine.
• Advantage 3: Can simulate machines you wouldn’t build.
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Example 1: Operating systems implement Virtual Memories that are much larger than real 
memories by simulating programs and going to disk or the web to reference “memory”

Example 2: Operating systems implement multiple Virtual Machines on a single real machine 
by keeping track of multiple PCs and rotating control to the different machines

Example 3: The Java Virtual Machine provides machine independence for Java programs. 
It is simulated on the real machine (PC, cellphone, toaster) you happen to be using.

Example 4: The Amazon Virtual Computing Environment provides “computing in the cloud”. 
It gives the illusion that your device has the power of a web server farm. 



Layers of Abstraction

Is TOY real?

Is Java real?

Approaching a new problem?
• build an (abstract) language for expressing solutions
• design an (abstract) machine to execute the language
• food for thought: Why build the machine? [instead, simulate it!]
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Examples: MATLAB, BLAST, AMP ....

Instruction set architecture

Java language specification

machine

programmer

Java virtual machine


