integers spi:
architecture

halt’ " dest 8561 oad
o Program Registers rddress" cais
mac ine 9c°z sero
register.- e 2€0 RG
‘opcod ::m m_é‘!,s!r

& :mmnnnstructllganw_!’r.i?gr ammemor
R":::::.::data counierTovR 8A0O

St Machine Lad egntents sfézu[f‘g
Pc switehes Fegisters
rigt |CAB computer

What is TOY?

An imaginary machine similar to:
* Ancient computers.
* Today's microprocessors.

DIGITAL EQUIPMENT CORPORATION

5. The TOY Machine

OUTPUT

Introduction to Computer Science - Sedgewick and Wayne - Copyright © 2007 - http://www.cs.Princeton.EDU/IntroCS

Why Study TOY?

Machine language programming.

* How do Java programs relate to computer?

* Key fo understanding Java references.

* Still situations today where it is really necessary.

multimedia, computer games, embedded devices, scientific computing, MMX, Altivec

Computer architecture.
* How does it work?
* How is a computer put together?

TOY machine. Optimized for simplicity, not cost or performance.

Switches. Input data and programs.

Lights. View data.

Memory.

* Stores data and programs.
* 256 16-bit "words."

Inside the Box

Registers.
* Fastest form of storage.
* Scratch space during computation.
* 16 16-bit registers.
* Register 0 is always O.

Arithmetic-logic unit (ALU). Manipulate
data stored in registers.

* Special word for stdin / stdout.

Program counter (PC).

Standard input, standard output. Interact
with outside world.

* An extra 8-bit register.

* Keeps track of next instruction to

be executed.

Binary People

There are only 10 types

of people in the world:
Those who understand binary
and those who don't.

http://www.thinkgeek.com/tshirts/frustrations/5aa9/zoom/

Data and Programs Are Encoded in Binary

Each bit consists of two states:
* 1 or O; true or false.
* Switch is on or off; wire has high voltage or low voltage.

Everything stored in a computer is a sequence of bits.
* Data and programs.
* Text, documents, pictures, sounds, movies, executables, ...

M = 77,, = 01001101, = 4D,
Q100! 0 = 79, = 01001111, = 4,
0lool ol M = 77,, = 01001101, = 4D,
Binary Encoding
How to represent integers?
* Use binary encoding. bec Bin bec

e Ex: 6375,, = 0001100011100111,

2 0010
0101 13

oo eulolo o a]e]s a2 1] 0]
0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

6375, = 4212 4211 +27 +26 425 +22 421 420

4096 +2048 +128 +64 +32 +4 +2 +1

1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal Encoding

How to represent integers?
* Use hexadecimal encoding.

Dec
* Binary code, four bits at a time.
«Ex: 6375, =0001100011100111,
= 18E7,,

+ 8 x 162

+ 2048

A Sample Program

A sample program. Adds 0008 + 0005 = 000D.

TOY memory

Bin
0000
0001
0010
0011
0100
0101
0110
0111

I
®
x

~4 o U oA~ W N = O

(program and data)

00: 0008

01: 0005

ENENES ﬂ 02: 0000
0000 0000 0000 ST
Registers Program counter 11: 8BO1

12: 1caB

13: 9c02

14: 0000

8
5
0

comments

/

RA < mem[00]
RB < mem[01]
RC << RA + RB

mem[02]
halt

add. toy

< RC

Machine "Core" Dump

Machine contents at a particular place and time.
* Record of what program has done.
* Completely determines what machine will do.

Main Memory
Registers pc

(o [e | v

0000 0000 0000 0000

m- m- index of next

0000 0000 0000 0000
0000 0000 0000 0000
0000

0000 0000 0000 0000 instruction 0000
0000
data : 0000
program =
m 0000 0000 0000 0000 0000 0000
riables m 0000 0000 0000 0000 0000 0000
m 0000 0000 0000 0000 0000 0000

A Sample Program

Program counter. The pc is initially 10, so the machine
interprets 8200 as an instruction.

00: 0008 8
01: 0005 5
fele=] L] 02: 0000 0
0000 0000 0000 -
Registers Progfam counter 11: 8BO1
12: 1caB
13: 9C02
14: 0000 halt

index of next

instruction to execute add. toy

0000
0000
0000
0000
0000
0000

0000
0000
0000

0000
0000
0000
0000
0000
0000

0000
0000
0000

RB < mem[01]
RC < RA + RB
mem[02] < RC

Load

Load. [opcode 8]
* Loads the contents of some memory location into a register.
* 8200 means load the contents of memory cell 00 into register a.

00: 0008 8
01: 0005 5

B = 02: 0000 0

0000 0000 0000

Registers Program counter 11: 8BO1 RB < mem[01]
12: 1CaAB RC < RA + RB
13: 9c02 mem[02] < RC
14: 0000 halt

add. toy
Co e 2 e[oo Lo 1o oo] a 52 2] o]
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
816 A, 0046

Add

Add. [opcode 1]

* Add contents of two registers and store sum in a third.

* 1cAB means add the contents of registers a and B and put the result into
register c.

00: 0008 8
01: 0005 5

Bl = 02: 0000 0

0008 0005 0000
10: 8A00 RA < mem[00]

Registers Program counter 11: 8BO1 RB < memIOlI

13: 9co02 mem[02] < RC
14: 0000 halt

add. toy

[as|) wsee ajfme] o) s [Tl ef s faf sz i) o]
0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1

116 c16 AlG B16

Load

Load. [opcode 8]
* Loads the contents of some memory location into a register.
* 8801 means load the contents of memory cell 01 info register s.

00: 0008 8
01: 0005

B = 02: 0000 o

0008 0000 0000

(5}

10: 8A00 RA < mem[00]

Registers Program counter

12: 1CAB RC < RA + RB
13: 9c02 mem[02] < RC

14: 0000 halt

add. toy
1) B I MR N I RN N B N e
1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1

816 Bis 016

Store

Store. [opcode 9]
* Stores the contents of some register into a memory cell.
* 9c02 means store the contents of register ¢ into memory cell 02.

00: 0008 8
01: 0005

B &= 02: 0000 o

0008 0005 000D

(5}

10: 8A00 RA < mem[00]
Registers Program counter 11: 8BO1 RB < mem[O01]

14: 0000 halt

add. toy
T I S R A R N
1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0
916 ClG 0216

Halt

Halt. [opcode 0]
* Stop the machine.

00: 0008 8
01: 0005 5

Bl = 02: 000 p

0008 0005 000D
10: 8A00 RA < mem[00]

Registers Program counter 11: 8BO1 RB < mem[01]
12: 1CAB RC < RA + RB

add. toy

TOY Instruction Set Architecture

TQY instruction set architecture (ISA).

o Interface that specifies behavior of machine.

* 16 register, 256 words of main memory, 16-bit words.
* 16 instructions.

Each instruction consists of 16 bits.
* Bits 12-15 encode one of 16 instruction types or opcodes.
* Bits 8-11 encode destination register d.
* Bits 0-7 encode:
[Format 1] source registers s and t
[Format 2] 8-bit memory address or constant

ST S 3 NN e Rl CH R e I Y
1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0

19

Program and Data

Instructions

Program. Sequence of 16-bit integers, - n halt
interpreted one way. = add
n subtract
Data. Sequence of 16-bit integers, and
interpreted other way. n xor
ﬂ shift left
Program counter (pc). Holds memory address H shift right
of the "next instruction" and determines load address
which integers get interpreted as instructions. - n load
g n store
16 instruction types. Changes contents of n load indirect
registers, memory, and pc in specified, E store indirect
well-defined ways. branch zero
n branch positive
H Jump register
ﬂ Jjump and link

18

TOY Reference Card
I Y A N A R Y N R N

Format 1 opcode dest d source s source t

opcode dest d addr
--

0: halt exit (0)

1: add 1 R[d] < R[s] + R[t]

2: subtract 1 R[d] < R[s] - RI[t]

3: and 1 R[d] < R[s] & R[t]

4: xor 1 R[d] < R[s] * R[t]

5: shift left 1 R[d] < R[s] << R[t]

6: shift right 1 R[d] < R[s] >> R[t]

7: load addr 2 R[d] < addr

8: load 2 R[d] < mem[addr]

9: store 2 mem[addr] < R[d] Register 0 always O.

A: Joad indirect 1 R[d] < mem[R[t]] Loads from mem [FF] from stdin.
7% | gene fehice: 1 mem[R[t]] < R[d] Stores to mem [FF] to stdout.
C: branch zero 2 if (R[d] == 0) pc < addr

D: branch positive 2 if (R[d] > 0) pc < addr

E: jump register 2 pc < R[d]

F: jump and link 2 R[d] < pc; pc < addr

20

TEQon TOY 1

What is the interpretation of 1a75

A.as a TOY instruction?

B. as an integer value?

Using the TOY Machine: Run

To run the program:

* Set 8 memory address switches to address of first instruction.

¢ Press Look to set pc to first instruction.

* Press rRun button to repeat fetch-execute cycle until halt opcode.

Fetch-execute cycle.

¢ Fetch: get instruction from memory.

* Execute: update pc move data to or from
memory and registers, perform calculations.

WA

Interfacing with the TOY Machine

To enter a program or data:

* Set 8 memory address switches.

* Set 16 data switches.

* Press Load: data written into addressed word of memory.

To view the results of a program:
* Set 8 memory address switches.
* Press Look: contents of addressed word appears in lights.

Look Step Run
OUTPUT

21 22

Flow Control

Flow control.
* To harness the power of TOY, need loops and conditionals.
* Manipulate pc to control program flow.

Branch if zero. [opcode C]
* Changes pc depending on whether value of some register is zero.
* Used fo implement: for, while, if-else.

Branch if positive. [opcode D]
* Changes pc depending on whether value of some register is positive.
* Used fo implement: for, while, if-else.

23 24

An Example: Multiplication
Multiply. Given integers a and b, compute c = a x b.
TOY multiplication. No direct support in TOY hardware.
Brute-force multiplication algorithm:

« Initialize c to 0.
* Add b to ¢, a times.

brute force multiply in Java

Issues ignored. Slow, overflow, negative numbers.

Step-By-Step Trace

multiply.toy

What does the following TOY program leave in R2?

10:
11:
12:
13:
14:
15:
16:

7COA
7101
7201
5221
2CC1l
DC13
0000

Multiply

multiply.toy

TEQon TOY 2

26

28

A Little History Basic Characteristics of TOY Machine

Electronic Numerical Integrator and Calculator (ENIAC). TOY is a general-purpose computer.

* First widely known general purpose electronic computer. * Sufficient power to perform ANY computation.
* Conditional jumps, programmable. \ oo * Limited only by amount of memory and time.

* Programming: change switches and cable connections. 30 x50 x 85 ft

17,468 vacuum fubes

* Data: enter numbers using punch cards. 300 multiply/sec

Stored-program computer. [von Neumann memo, 1944]

* Data and program encoded in binary. oo
ohn von Neumann

* Data and program stored in SAME memory.
* Can change program without rewiring.

Outgrowth of Alan Turing's work. (stay tuned)

All modern computers are general-purpose computers

and have same (von Neumann) architecture.

il)
John Mauchly (leff) and J. Presper Eckert (right) ENIAC, Ester Gerston (left), Gloria Gordon (right) EDSAC (right)
http://cs.swau.edu/~durkin/articles/history_computing.html US Army photo: http://ftp.arl.mil/ftp/historic-computers

Maurice Wilkes (left)

Harvard vs. Princeton

Harvard architecture.

* Separate program and data memories.

* Can't load game from disk (data) and execute (program).
* Used in some microcontrollers.

Von Neumann architecture.
* Program and data stored in same memory.
* Used in almost all computers.

Q. What's the difference between Harvard and Princeton?
A. At Princeton, data and programs are the same.

31

