consider product
one numbers j++ends

neeq vz Ul US@ dead aPP"‘af"::s row Iarge
anpplliErage .m,.ma... example found

test ata

v;r’ablt! Arrags d C Sin P"‘!"a'“"""i smemem
String selfnvn.d‘nqﬂalk car d S P,.':,ggram
arr a o sample way
JHS"

‘¢olumn
number . &,’n‘.,'.,a,,u. on - indec™ currespandm b ot length
eler;\relmmerlo refer . m-g following
loap equal elemems u l ++ walks PrimeSieve

permMatEE, boolean Sgsrem out.printin random

namé’ pre,rammung false v alue pr-mes double size

mmpces uence Ejon
t pe two-dumensmnal it random
‘J isPrime first

A Foundation for Programming

any program you might want to write

objects
functions and modules
graphics, sound, and image I/O
store and manipulate
arrays huge quantities of data

conditionals and loops

Arrays

This lecture. Store and manipulate huge quantities of data.

Array. Indexed sequence of values of the same type.

Examples.
* 52 playing cards in a deck.
* 5 thousand undergrads at Princeton.
* 1 million characters in a book.
* 10 million audio samples in an MP3 file.
* 4 billion nucleotides in a DNA strand.
* 73 billion Google queries per year.
* 50 ftrillion cells in the human body.
¢ 6.02 x 10?8 particles in a mole.

index value
=
doug
-
maia
mona
cbienia
e

Many Variables of the Same Type Many Variables of the Same Type
Goal. 10 variables of the same type. Goal. 10 variables of the same type.

declares, creates, and initializes
[stay tuned for details]

Many Variables of the Same Type Arrays in Java

Goal. 1 million variables of the same type. Java has special language support for arrays.

* To make an array: declare, create, and initialize it.
* To access element i of array named a, use a[i].

* Array indices start at 0.

Arrays in Java

Java has special language support for arrays.
* To make an array: declare, create, and initialize it.
* To access element i of array named a, use a[i].
* Array indices start at 0.
int N = 1000;

double[] a;
a = new double[N];

// declare the array
// create the array

for (int i = 0; i < N; i++) // initialize the array

a[i] = 0.0;

// all to 0.0

Compact alternative: Declare, create, and initialize in one statement.

* Default: all entries automatically set to O.

Sample Array Code: Vector Dot Product

Dot product. Given two vectors x[1 and y[] of length N, their dot product is
the sum of the products of their corresponding components.

double[] x
double[] y

double sum

for (int i

nn
O -~

=0;

0.
0.
.0;

3,
5,

’

i < N; i++)

sum += x[i]*y[i];

0.6, 0.1}
0.1, 0.4}

’

’

int N = 1000;

double[] a = new double[N];

* Alternative: entries initialized to given literal values.

double[] x = { 0.3, 0.6, 0.1 };

Array Processing Examples

double[] a = new double[N];
for (int i = 0; i < N; i++)
a[i] = Math.random() ;

create an array with N random values

for (int i = 0; i < N; i++)
System.out.println(a[i]) ;

print the array values, one per line

double max = Double.NEGATIVE INFINITY;
=0

for (int i ;1 < N; i+t)
if (a[i] > max) max = a[i];

find the maximum of the array values

double[] b = new double[N];
for (int i = 0; i < N; i++)
b[i] = a[i];

copy to another array

double sum = 0.0;

for (int i = 0; i < N; i++)
sum += a[i];

double average = sum / N;

compute the average of the array values

for (int i = 0; i < N/2; i++)
{

double temp = b[i];

b[i] = b[N-1-i];

b[N-i-1] = temp;
}

reverse the elements within the array

i x[i] y[i] =x[i]*y[i] sum
0

0 .30 .50 .15 .15

.60 .10 .06 .21

2 .10 .40 .04 .25

.25

Shuffling a Deck

Setting Array Values at Compile Time

Ex. Print a random card.

String[] rank =

{
ll2ll, ll3ll, ll4l|’ ll5ll, ll6ll, ll7ll, llBll, llgll,
ll10ll , " Jackll , "Queenll , llKingll , llAcell

}:

String[] suit =

"Clubs", "Diamonds", "Hearts", "Spades"

}:

int i = (int) (Math.random() * 13); // between 0 and 12
int j = (int) (Math.random() * 4); // between 0 and 3

System.out.println(rank[i] + " of " + suit[j]);

Shuffling
Goal. Given an array, rearrange its elements in random order.

Shuffling algorithm.
* In iteration i, pick random card from deck[i] through deck[N-1], with
each card equally likely.
* Exchange it with deck[i].

int N = deck.length;
for (int i = 0; i < N; i++)

{
int r = i + (int) (Math.random() * (N-i));
String t = deck[r];
deck[r] = deck[i]; swap between i and N-1
deck[i] = t; e

}

The follo

TEQ on Arrays 1

wing code sets array values to the 52 card values and prints them.

What order are they printed?

String[] deck = new String[52];
for (int i = 0; i < 13; i++)

for (int j = 0; j < 4; j++) typical array

deck[4*i + j] = rank[i] + " of " + suit[j]; «— Processingcode
changes values

. . . . af runtime
for (int i = 0; i < 52; i++) I
System.out.println(deck[i]) ;
A. 2 of clubs B. 2 of clubs
2 of diamonds 3 of clubs
2 of hearts 4 of clubs
2 of spades 5 of clubs
3 of clubs 6 of clubs
14
Shuffling a Deck of Cards
public class Deck
{
public static void main(String[] args)
{
String[] suit = { "Clubs", "Diamonds", "Hearts", "Spades" };
String[] rank = { "2", "3", "gn, g, wgnw wyn - ungn wgw,
"10", "Jack", "Queen", "King", "Ace" }:
int SUITS = suit.length;
int RANKS = rank.length; <« avoid "hardwired" constants like 52, 4, and 13.

int N = SUITS * RANKS;

String[] deck = new String[N]; build the deck
for (int i = 0; i < RANKS; i++)
for (int j = 0; j < SUITS; Jj++)
deck [SUITS*i + j] = rank[i] + " of " + suit[j];

for (int i = 0; i < N; i++)
{ shuffle
int r = i + (int) (Math.random() * (N-i));
String t = deck[r];
deck[r] deck[i];
deck[i] t;

}

for (int i = 0; i < N; i++)

. : print shuffled deck
System.out.println(deck[i]);

Shuffling a Deck of Cards

%

java Deck

% java Deck

5 of Clubs 10 of Diamonds
Jack of Hearts King of Spades
9 of Spades 2 of Spades
10 of Spades 3 of Clubs

Coupon Collector

Coupon Collector Problem

Coupon collector problem. Given v different card types, how many
do you have to collect before you have (at least) one of each type?

assuming each possibility is equally

iTrrrliTr' likely for each card that you collect

Simulation algorithm. Repeatedly choose an integer i between 0 and N-1.
Stop when we have at least one card of every type.

Q. How to check if we've seen a card of type i?
A. Maintain a boolean array so that found[i] is true if we've already
collected a card of type i.

9 of Clubs 4 of Spades r': - - = -&. 2

7 of Spades Queen of Clubs = ;‘;-» - N y

6 of Diamonds 2 of Hearts - :\j\ = N /

7 of Hearts 7 of Diamonds ‘_ - gy %

7 of Clubs 6 of Spades . & (\J’

4 of Spades Queen of Spades P

Queen of Diamonds 3 of Spades i
10 of Hearts Jack of Diamonds

5 of Diamonds 6 of Diamonds P

Jack of Clubs 8 of Spades)
Ace of Hearts 9 of Diamonds

5 of Spades 10 of Spades "

Coupon Collector: Java Implementation

public class CouponCollector
{

public static void main(String[] args)

{
int N = Integer.parselnt(args[0]);
int cardent = 0; // number of cards collected
int valent = 0; // number of distinct cards

// Do simulation.
boolean[] found =
while (valcnt < N)
{

new boolean[N];

int val = (int) (Math.random() * N);
cardcnt++;

if (!'found[val])

{

type of next card
(between 0 and N-1)

valcnt++;
found[val] = true;

}

// all N distinct cards found
System.out.println(cardecnt) ;

20

Coupon Collector: Debugging

Debugging. Add code to print contents of all variables.

found

val m valent cardent
FFFFFF 0 0
2 T 1 1
0 T 2 2
4 T 3 3
0 4
1 T 4 5
2 6
5 T 5 7
0 8
1 9
3 T 6 10

Challenge. Debugging with arrays requires tracing many variables.

21

Coupon Collector: Scientific Context

Q. Given a sequence from nature, does it have same characteristics
as a random sequence?

A. No easy answer - many tests have been developed.

Coupon collector test. Compare number of elements that need fo be

examined before all values are found against the corresponding answer for a

random sequence.

TOUR OF ACCOUNTING

NINE NINE 4 Sou THATS THE
OVER HERE NINE NINE 5| Sore PROBLEM
WE HAVE OUR NINE NINE i JoArs WITH RAN-
RANDOM NUMBER :| RaNDOM? DOMNESS:
GENERATOR. i L Tou AN
bl 3
) H bol SuRe.
T : A
. H I 2
g)
\IEW V£ L 2 @

Coupon Collector: Mathematical Context

Coupon collector problem. Given N different possible cards, how many do
you have to collect before you have (at least) one of each type?

Fact. About N(1+1/2+1/3+ .. +1/N)~NInN

see ORF 245 or COS 341

Ex. N = 30 baseball teams. Expect to wait = 120 years before all teams win
a World Series.

under idealized assumptions

22

Multidimensional Arrays

Two Dimensional Arrays
Two dimensional arrays.
* Table of data for each experiment and outcome.
* Table of grades for each student and assignments.

* Table of grayscale values for each pixel in a 2D image.

Mathematical abstraction. Matrix.
Java abstraction. 2D array.

Gene 1

Genen

Skin Liver Lung BreastTumors Breast Normal Kidney Prostate Brain APL Ovary
Luminal Tumors Breas

Basal

Reference: Botstein & Brown group W gene expressed

Setting 2D Array Values at Compile Time

Initialize 2D array by listing values.

double[][] p =

{
{ .02, .92, .02, .02, .02},
{ .02, .02, .32, .32, .32},
{ .02, .02, .02, .92, .02 },
{ .92, .02, .02, .02, .02},
{ .47, .02, .47, .02, .02 },
}i

a[11[3]

.92 .02 .02\.02].02
row1—{.02 .92 .32.32][.32]
.02 .02 .02.92[.02
.92 .02 .02(.02.02
.47 .02 .47(.02].02

column 3

W gene not expressed

Two Dimensional Arrays in Java

Declare, create, initialize. Like 1D, but add another pair of brackets.

int M = 10; allll
int N = 3; \

double[][] a = new double[M] [N];

Array access.
Use a[i] [j] To access entry in row i and column j.
Indices start at 0.

Initialize. 26l —
This code is implicit (sets all entries to 0).

for (int i = 0; i1 < M; i++)
for (int j = 0; j < N; j++)
a[i][j] = 0.0;

a[o][0]

a[0][1]|a[0][2]

a[1]1[0]

af[1l][1]|a[1][2]

a[2][0]

a[2][1]|a[2][2]

a[3][0]

a[3][1]|a[3][2]

a[41[0]

a[4]1[1]|a[4][2]

a[5][0]

a[5][1]|a[5]12]

a[6][0]

a[6][1] |a[6][2]

a[71[0]

a[71[1]|a[7]1[2]

a[8][o0]

a[8][1]|a[8][2]

a[9][0]

a[9][1] |a[9][2]

A 10-by-3 array

Warning. This implicit code might slow down your program for big arrays.

Matrix Addition

Matrix addition. Given two N-by-N matrices a and b, define c

26

to be the N-by-N matrix where c[i1[3] is the sum a[i][3] + b[i][j].

a[lll

.70 .20

.30 .60
.50 .10

new double[N] [N];

< N; i++)

; J < N; j++)
[1]1[3]1 + b[il[31~

double[][] ¢ =
for (int i = 0; i
for (int j =0
c[i][3] a

b[1I]

.80 .30
.10 .40

.10 .30

clltl 15 .50

.60 .40

-100 ap1](2]
.10

.40

I'4

:50 b[i1][2]

¥

.10
.40

600 cr1](2]
.40 1.0 .20

.80

I'4

28

Matrix Multiplication

Matrix multiplication. Given two N-by-N matrices a and b, define c
to be the N-by-N matrix where c[i] [j] is the dot product of
the i™ row of a and the 3™ row of b.

allll

.70 .20 .10

.30 .60 .10 < row1l
all values initialized to O 50 .10 .40

double[][] ¢ = new double[N] [N]; column 2

for (int i = 0; i < N; i++) !
for (int j = 0; j < N; j++) BT g0 30 .50
for (int k = 0; k < N; k++) .10 .4o .10
cl[il[3] += alil[k] * b[k][3]; 110 .30 .40

c[1][2] = .3%.

cllll | 59 32 .21 + .6*%.1

.31 .36 .25 + .1%.4
.45 .31 .42 ‘\\\\\\

= .25

Application: 2D Random Walks

TEQ on Arrays 2

How many multiplications to multiply two N-by-N matrices?

double[][] ¢ = new double[N] [N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
c[il[j]1 += a[i]l[k] * b[k][j];

C. N3

30

Application: Self-Avoiding Walks

32

Self-Avoiding Walk

Model.
* N-by-N lattice.
e Start in the middle.

Iﬂ

* Randomly move to a neighboring intersection, dead end
avoiding all previous intersections.
* Two possible outcomes: escape and dead end
escape

Applications. Polymers, statistical mechanics, etc.

Q. What fraction of time will you escape in an 5-by-5 lattice?
Q. Inan N-by-N lattice?
Q. Inan N-by-N-by-N lattice?

Self-Avoiding Walks

% java SelfAvoidingWalk 1!
5% dead ends
% java SelfAvoidingWalk 20 100000

'_l'l— 32% dead ends
_;-'Hu L3 L % java SelfAvoidingWalk 30 100000

58% dead ends

5

100000

EHLEJ

5}

o

o

% java SelfAvoidingWalk 40 100000

77% dead ends
% java SelfAvoidingWalk 50 100000
87% dead ends

L;: ﬁ_' % java SelfAvoidingWalk 60 100000
93% dead ends

% java SelfAvoidingWalk 7
?’u 96% dead ends

E‘_'r % java SelfAvoidingWalk 8
98% dead ends

% java SelfAvoidingWalk 9

o

=)

o

100000

=3

100000

=3

100000

99% dead ends
; | % java SelfAvoidingWalk 100 100000
dl ; 99% dead ends

75%

50%

Fiat

25%

o* B
E
.
R

0%
10 20 30 40 50 60 70 80 90 100

Self-Avoiding Walk: Implementation

public class SelfAvoidingWalk
{
public static void main(String[] args)
{
int N = Integer.parselnt(args[0]); // lattice size
int T = Integer.parselnt(args[1]); // number of trials
int deadEnds = 0; // trials ending at dead end
for (int t = 0; t < T; t++)
{
boolean[][] a = new boolean[N] [N]; // intersections visited
int x = N/2, y = N/2; // current position

while (x > 0 && x < N-1 && y > 0 && y < N-1)
{

if (a[x-1]1[y] && a[x+1][y] && a[x][y-1] && a[x][y+l])

{ deadEndst++; break; } dead end
a[x][y] = true; // mark as visited

double r = Math.random() ;

if (r < 0.25) { if ('a[x+1][y]) =x++; } take a random
else if (r < 0.50) { if (la[x-1]1[y]) x--; } step to a new
else if (r < 0.75) { if ('a[x][y+1]) y++; } intersection
else if (r < 1.00) { if ('a[x][y-1]) y--; }

}

}
System.out.println(100*deadEnds/T + "% dead ends");

}

34

Summary

Arrays.

@ Organized way to store huge quantities of data.
© Almost as easy to use as primitive types.

@ Can directly access an element given its index.

Ahead. Reading in large quantities of data from a file into an array.

MAN, YOURE BEING INCONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FROM ONE, S0ME FRom ZERD.

DIFFERENT TASks CALL FOR VAT, WHAT?
DIFFERENT CONVENTIONS. TO ,
QUOTE STANFORD ALGOR ITHMS WELL, THATS WHAT HE
EYPERT DONALD KNUTH, SAID WHEN | ASKED
“\JHO ARE You? HOW pio_ Him ABOUT IT.
YOU GET IN MY HOUSE? /
/

http://imgs.xkcd.com/comics/donald_knuth.png

