1. Combinational Circuits

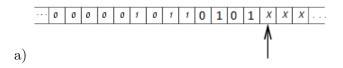
(a)	decimal	x2	x1	x0	X >2
	0	0	0	0	0
	1	0	0	1	0
	2	0	1	0	0
	3	0	1	1	1
	-4	1	0	0	1
	-3	1	0	1	1
	-2	1	1	0	0
	-1	1	1	1	0

- (b) x2'x1x0 + x2x1'x0' + x2x1'x0
- (c) The circuit does not match the function in parts (a) and (b).

The following input to the circuit will incorrectly result in a 0 output: 100.

2. Regular Expressions, Deterministic Finite State Automata (6 points)

- a) The answer, iii) generates all desired strings and only desired strings.
 - i) can generate a string that starts with b.
 - ii) cannot generate a single a.
 - iv) can generate a string that starts with b.
 - v) cannot generate a single a.
- b) The answer, i) accepts all desired strings and only desired strings.
 - ii) accepts the empty string.
 - iii) accepts strings that start with b.


3. Linked Lists (6 points)

- (a) i) returns true
 - ii) returns true
 - iii) returns false
 - iv) returns false
- (b) linky_dink returns true for a null-terminated linked list. It returns false for a circular linked list, even if the circular part is preceded by a straight path.
- (c) N

For a null terminated linked list, b will traverse each node once before the method returns true. For a circular linked list, b which is traveling twice as quickly as a, will catch up to a in a constant number of circuits of the length N list.

The following inputs will incorrectly result in a 1 output: 001 and 010.

4. Turing Machine (4 points)

b) The Turing Machine subtracts 1 from the binary number on the tape.

5. Data Structures (3 points)

- (a) Symbol Table
- (b) Binary Search Tree
- (c) Stack
- 6. True or False (6 points) Circle your answer.
 - T (a) P is the set of search problems solvable in Polynomial time by a deterministic Turing Machine.
 - F (b) NP is the set of search problems not solvable in Polynomial time by a deterministic Turing Machine.
 - F (c) For proper encapsulation, instance variables should always be declared public.
 - F (d) Because the Halting Problem is unsolvable, it is impossible to tell if *your* TSP program for Assignment 6 has an infinite loop.
 - T (e) A Universal Turing Machine can compute anything that any other Turing Machine could possibly compute.
 - T (g) If P equals NP, then the Traveling Salesperson Problem can be solved in polynomial time by a deterministic Turing Machine.
 - F (h) If P does not equal NP, then there is no case of the Traveling Salesperson Problem for which you can find the optimal tour in polynomial time.
 - F (j) Factoring is known to be in NP but has not been proven to be NP-complete, so the discovery of a polynomial-time algorithm for factoring would mean that P equals NP.
 - F (k) Factoring is known to be in NP but has not been proven to be NP-complete, so no polynomial-time algorithm for factoring is possible.