Programming with Javascript

Programming language components

statements: instructions that say what to do

- compute values, make decisions, repeat sequences of operations
variables: places to hold data in memory while program is running
- numbers, text, ...

syntax: grammar rules for defining legal statements

- what's grammatically legal? how are things built up from smaller things?
semantics: what things mean

- what do they compute?

most languages are higher-level and more expressive than the
assembly language for the toy machine

- statements are much richer, more varied, more expressive

- variables are much richer, more varied

- grammar rules are more complicated

- semantics are more complicated
but it's basically the same idea

Why study / use Javascript?

all browsers process Javascript
- many web services rely on Javascript in browser
- canuse it in your own web pages
- can understand what other web pages are doing (and steal from them)
easy to start with
easy to do useful things with it
* programming ideas carry over into other languages

Javascript has limitations:
- no use outside of web pages
- many irregularities and surprising behaviors
- no browser matches ostensible standards exactly
- doesn't illustrate much about how big programs are built

Javascript components

Javascript language
- statements that tell the computer what to do
get user input, display output,
set values, do arithmetic,
test conditions, repeat groups of statements, ...
libraries, built-in functions
- pre-fabricated pieces that you don't have to create yourself
math functions, text manipulation
access to browser and web pages
- buttons, text areas, images, page contents, ...

you are not expected to remember syntax or other details

you are not expected to write code in exams
(though a bit in problem sets and labs)

you are expected to understand the ideas
- how programming and programs work

Basic example #1: join 2 names (name2 html)

Javascript code appears in HTML file between <script> tags
<script language=javascript> ... </script>
shows variables, dialog boxes, an operator

<html>

<body>

<P> name2.html: joins 2 names

<script>
var firstname, secondname, result
firstname = prompt("Enter first name")
secondname = prompt("Enter last name")
result = firstname + " " + secondname // + means "join"

here

alert("hello, " + result) // and here

</script>

Basic example #2: add 2 numbers (add2.himl)

dialog boxes, variables, arithmetic, conversion

<html>
<body>
<P> add2.html: adds 2 numbers
<script>
var numl, num2, sum
numl = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseIlnt(numl) + parseInt(num2) // "+" means "add"
alert (sum)
</script>

parseInt(...) converts a sequence of characters into its integer value

there's also a parseFloat(..) for floating point numbers

Adding up numbers: addup.html

variables, operators, expressions, assignment statements
+ while loop, relational operator (I= "not equal to")

<html>
<body>
<script>
var sum = 0
var num
num = prompt ("Enter new value, or 0 to end")
while (num '= 0) {
sum = sum + parseInt (num)
num = prompt("Enter new value, or 0 to end")
}
alert("Sum = " + sum)
</script>

Find the largest number: max.html

needs an If to test whether new number is bigger
needs another relational operator
needs parseInt or parseFloat to treat input as a number

var max = 0
var num
num = prompt("Enter new value, or 0 to end")
while (num '= 0) {

if (parseFloat(num) > max)

max = num

num = prompt ("Enter new value, or 0 to end")

}

document.write("<P> Max = " + max)

Variables, constants, expressions, operators

a variable is a place in memory that holds a value

- has a name that the programmer gave it, like sum or Area or n

- in Javascript, can hold any of multiple types, most often
numbers like 1 or 3.14, or
sequences of characters like "Hello" or "Enter new value"

- always has a value

- has to be set to some value initially before it can be used

- its value will generally change as the program runs

- ultimately corresponds to a location in memory

- but it's easier to think of it just as a name for information

a constant is an unchanging literal value like 3 or "hello"
an expression uses operators, variables and constants
to compute a value
3.14* rad * rad
operators include + - * /

Types, declarations, conversions

variables have to be declared in a var statement

+ each variable holds information of a specific type
- really means that bits are to be interpreted as info of that type
- internally, 3 and 3.00 and "3.00" are represented differently

+ Javascript usually infers types from context, does conversions

automatically
- "Sum="+sum

sometimes we have to be explicit:

- parseInt(...) if can't tell from context that string is meant as an

integer
- parseFloat(...) if it could have a fractional part

Computing area: area.html

var rad, area;
rad = prompt("Enter radius")
while (rad !'= null) {

area = 3.14 * rad * rad

document.write ("<P> radius = " + rad + ", area = " + area)

rad = prompt ("Enter radius")

how to terminate the loop
- 0is a valid data value

- prompt () returns null for Cancel and "" for OK without typing any text

string concatenation to build up output line
no exponentiation operator so we use multiplication

Making decisions and repeating statements

if-else statement makes decisions
- the Javascript version of decisions written with ifzero, ifpos, ...

if (condition is true) {
do this group of statements
}else {
do this group of statements instead

}

while statement repeats groups of statements
- aJavascript version of loops written with ifzero and goto

while (condition is true) {
do this group of statements

}

if-else examples (sign.html)
+ can include else-if sections for a series of decisions:

var num = prompt ("Enter number")
while (num '= null) {
num = parselnt (num)
if (num > 0) {
alert(num + " is positive")
} else if (num < 0) {
alert(num + " is negative")
} else {
alert(num + " is zero")

“while loop" examples

+ counting or "indexed" loop:
i=1
while (i <= 10) {
// do something (maybe using the current value of i)
i=1i+1
}

+ "nested" loops (while.html):
var n = prompt ("Enter number")

while (n '= null) { // "!=" means "is not equal to"
i=0
while (i <= n) {
document.write ("
" + i + " " + i*i)
i=i+1

}
n = prompt ("Enter number")

}
num = prompt ("Enter number")
}
Functions

+ a function is a group of statements that does some computation

- the statements are collected into one place and given a name
- other parts of the program can "call" the function
that is, use it as a part of whatever they are doing
- can give it values to use in its computation (arguments or parameters)
- computes a value that can be used in expressions
- the value need not be used

+ Javascript provides some useful built-in functions
- e.g., prompt, alert, ...

* you can write your own functions

Function examples

+ syntax
function name (list of "arguments") {
the statements of the function

+ function definition:

function area(r) {

return 3.14 * r * r

- function uses:
rad = prompt("Enter radius")
alert("radius = " + rad + ", area = " + area(rad))

alert("area of ring =" + area(l.75) - area(0.6))

Ring.html

var rl, r2;

rl = prompt("Enter radius 1")

while (rl '= null) {
r2 = prompt ("Enter radius 2")
alert("area = " + (area(rl) - area(r2))) // parens needed!
rl = prompt("Enter radius 1")

function area(r) {
return 3.14 * r * r

Why use functions?

+ if a computation appears several times in one program
- afunction collects it info one place
+ breaks a big job into smaller, manageable pieces
- that are separate from each other
+ defines an interface
- implementation details can be changed as long as it still does the same
job
- different implementations can interoperate
+ multiple people can work on the program
+ a way to use code written by others long ago and far away
- most of Javascript's library of useful stuff is accessed through
functions

+ a good library encourages use of the language

Summary: elements of (most) programming languages

constants: literal values like 1, 3.14, "Error!"
variables: places to store data and results during computing
declarations: specify name (and type) of variables, etc.

expressions: operations on variables and constants to produce new
values

assignment: store a new value in a variable

statements: assignment, input/output, loop, conditional, call
conditionals: compare and branch; if-else

loops: repeat statements while a condition is true

functions: package a group of statements so they can be called/
used from other places in a program

libraries: functions already written for you

How Javascript works

recall the compiler -> assembler -> machine instructions process
for Fortran, C, etc.

Javascript is analogous, but differs significantly in details

when the browser sees Javascript in a web page (<script> tags)
- passes the Javascript program to a Javascript compiler
Javascript compiler
- checks for errors

- compiles the program into instructions for something like the toy machine,
but richer, more complicated, higher level

- runs a simulator program (like the toy) that interprets these instructions
simulator is often called an "interpreter" or a "virtual machine"

- oftenwritten in C or C++ but can be written in anything
browser and simulator interact

- when an event like click happens, browser tells Javascript ("onClick")

- Javascript tells browser to do things (pop up dialog box)

The process of programming

what we saw with Javascript or Toy is like reality, but very small

figure out what to do

- start with a broad specification

- break into smaller pieces that will work together

- spell out precise computational steps in a programming language
build on a foundation (rarely start from scratch)

- aprogramming language that's suitable for expressing the steps

- components that others have written for you

functions from libraries, major components, ...
- which in turn rest on others, often for several layers
- runs on software (the operating system) that manages the machine

it rarely works the first time
- test to be sure it works, debug if it doesn't
- evolve as get a better idea of what to do, or as requirements change

Real-world programming

the same thing, but on a grand scale
- programs may be millions of lines of code
typical productivity: 1-10K lines/year/programmer
- thousands of people working on them
- lifetimes measured in years or even decades
big programs need teams, management, coordination, meetings, ...
schedules and deadlines
constraints on how fast the program must run, how much memory
it can use
external criteria for reliability, safety, security, interoperability
with other systems, ..

maintenance of old (“legacy") programs is hard

- programs must evolve to meet changing environments and requirements
- machines and tools and languages become obsolete

- expertise disappears

