
1

Today:

Everything is numbers Everything is bits

1.  Representing numbers as bits
2.  Representing information as numbers

more detail

€

→

Important ideas

•  number of items and number of digits are tightly related:
–  one determines the other
–  maximum number of different items = base number of digits
–  e.g., 9-digit SSN: 109 = 1 billion possible numbers

–  e.g., to represent up to 100 “characters”: 2 digits is enough
–  but for 1000 characters, we need 3 digits

•  interpretation depends on context
–  without knowing that, we can only guess what things mean
–  what's 81615 ?

Review: What's a bit? What's a byte?

•  a bit is the smallest unit of information
•  represents one 2-way decision or a choice out of two possibilities

–  yes / no, true / false, on / off, M / F, ...
•  abstraction of all of these is represented as 0 or 1

–  enough to tell which of TWO possibilities has been chosen
–  a single digit with one of two values
–  hence "binary digit"
–  hence bit

•  binary is used in computers because it's easy to make fast,
reliable, small devices that have only two states
–  high voltage/low voltage, current flowing/not flowing (chips)
–  electrical charge present/not present (RAM, flash)
–  magnetized this way or that (disks)
–  light bounces off/doesn't bounce off (cd-rom, dvd)

•  all information in a computer is stored and processed as bits

•  a byte is 8 bits that are treated as a unit

Why binary, from von Neumann's paper:

5.2. In a discussion of the arithmetical organs of a computing
machine one is naturally led to a consideration of the number
system to be adopted. In spite of the longstanding tradition of
building digital machines in the decimal system, we feel strongly
in favor of the binary system for our device. Our fundamental
unit of memory is naturally adapted to the binary system since
we do not attempt to measure gradations of charge at a
particular point in the Selectron but are content to distinguish
two states.

 The flip-flop again is truly a binary device. On magnetic wires or
tapes and in acoustic delay line memories one is also content to
recognize the presence or absence of a pulse or (if a carrier
frequency is used) of a pulse train, or of the sign of a pulse.
(We will not discuss here the ternary possibilities of a positive-
or-negative-or-no-pulse system and their relationship to
questions of reliability and checking,

A review of how decimal numbers work
•  how many digits?

–  we use 10 digits for counting: "decimal" numbers are natural for us
–  other schemes show up in some areas

clocks use 12, 24, 60; calendars use 7, 12
other cultures use other schemes (quatre-vingts)

•  what if we want to count to more than 10?
–  0 1 2 3 4 5 6 7 8 9

1 decimal digit represents 1 choice from 10; counts 10 things; 10 distinct values
–  00 01 02 … 10 11 12 … 20 21 22 … 98 99

2 decimal digits represents 1 choice from 100; 100 distinct values
we usually elide zeros at the front

–  000 001 … 099 100 101 … 998 999
3 decimal digits …

•  decimal numbers are shorthands for sums of powers of 10
–  1492 = 1 x 1000 + 4 x 100 + 9 x 10 + 2 x 1
–  = 1 x 103 + 4 x 102 + 9 x 101 + 2 x 100

•  counting in "base 10", using powers of 10

Binary numbers: using bits to represent numbers
•  just like decimal except there are only two digits: 0 and 1

•  everything is based on powers of 2 (1, 2, 4, 8, 16, 32, …)
–  instead of powers of 10 (1, 10, 100, 1000, …)

•  counting in binary or base 2:
 0 1

1 binary digit represents 1 choice from 2; counts 2 things;
2 distinct values

 00 01 10 11
2 binary digits represents 1 choice from 4; 4 distinct values

 000 001 010 011 100 101 110 111
3 binary digits …

•  binary numbers are shorthands for sums of powers of 2
 11011 = 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1
 = 1 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20

•  counting in "base 2", using powers of 2

2

Using bits to represent information

•  M/F or on/off
•  Fr/So/Jr/Sr
•  add grads, auditors, faculty
•  a number for each student in 109
•  a number for each freshman at PU
•  a number for each undergrad at PU

Number of items represent with n bits?
Largest magnitude represent with n bits?

13th century wine units

2 gills = 1 chopin
2 chopins = 1 pint
2 pints = 1 quart
2 quarts = 1 pottle
2 pottles = 1 gallon
2 gallons = 1 peck
2 pecks = 1 demibushel
2 demibushels = 1 bushel or firkin
2 firkins = 1 kilderkin
2 kilderkins = 1 barrel
2 barrels = 1 hogshead
2 hogspeads = 1 pipe
2 pipes = 1 tun

–  from D E Knuth, The Art of Computer Programming, v 2

Binary (base 2) arithmetic

•  works like decimal (base 10) arithmetic, but simpler

•  addition:

 0 + 0 = 0
 0 + 1 = 1
 1 + 0 = 1
 1 + 1 = 10

•  subtraction, multiplication, division are analogous

Bytes

•  "byte" = group of 8 bits
–  on modern machines, the fundamental unit of processing and

memory addressing
–  can encode any of 28 = 256 different values, e.g:

  numbers 0 .. 255 or
  a single letter like A or digit like 7 or punctuation like $

–  ASCII character set defines values for letters, digits,
punctuation, etc.

•  group 2 bytes together to hold larger entities
–  two bytes (16 bits) holds 216 = 65536 values
–  a bigger integer, a character in a larger character set

Unicode character set defines values for almost all characters
anywhere

Bytes cont.

•  group 4 bytes together to hold even larger entities
–  four bytes (32 bits) holds 232 = 4,294,967,296 values

  an even bigger integer,
  a number with a fractional part (floating point),
  a memory address

•  etc.
–  recent machines use 64-bit integers and addresses (8 bytes)

264 = 18,446,744,073,709,551,616

Interpretation of bits depends on context

•  meaning of a group of bits depends on how they are interpreted
•  1 byte could be

–  1 bit in use, 7 wasted bits (e.g., M/F in a database)
–  8 bits storing a number between 0 and 255
–  an alphabetic character like W or + or 7
–  part of a character in another alphabet or writing system (2 bytes)
–  part of a larger number (2 or 4 or 8 bytes, usually)
–  part of a picture or sound
–  part of an instruction for a computer to execute

•  instructions are just bits, stored in the same memory as data
•  different kinds of computers use different bit patterns for their

instructions
   laptop, cellphone, game machine, etc., all potentially different

–  part of the location or address of something in memory
–  ...

•  one program's instructions are another program's data
–  when you download a new program from the net, it's data
–  when you run it, it's instructions

3

Powers of two, powers of ten

1 bit = 2 possibilities
2 bits = 4 possibilities
3 bits = 8 possibilities
...
n bits = 2n

210 = 1,024 is about 1,000 or 1K or 103
220 = 1,048,576 is about 1,000,000 or 1M or 106
230 = 1,073,741,824 is about 1,000,000,000 or 1G or 109

the approximation is becoming less good
but it's still good enough for estimation

•  terminology is often imprecise:
–  " 1K " might mean 1000 or 1024 (103 or 210)
–  " 1M " might mean 1000000 or 1048576 (106 or 220)

Converting between binary and decimal (version 1)

•  binary to decimal:
 1101 = 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20

 = 1 x 8 + 1 x 4 + 0 x 2 + 1 x 1
 = 13

•  decimal to binary:
–  start with largest power of 2 smaller than the number
–  for each power of 2 down to 20
–  if you can subtract that power of 2, do so and write "1"
–  otherwise write "0"

–  start with 13, subtract 8, write "1"
–  with 5, subtract 4, write "1"
–  with 1, can't subtract 2, write "0"
–  with 1, subtract 1, write "1"
–  answer is 1101

Converting between binary and decimal (version 2)

•  decimal to binary (from right to left):
–  repeat while the number is > 0:
–  divide the number by 2
–  write the remainder (0 or 1)
–  use the quotient as the number and repeat
–  answer is the resulting sequence in reverse (right to left) order

–  divide 13 by 2, write "1", number is 6
–  divide 6 by 2, write "0", number is 3
–  divide 3 by 2, write "1", number is 1
–  divide 1 by 2, write "1", number is 0
–  answer is 1101

Hexadecimal notation

•  binary numbers are bulky

•  hexadecimal notation is a shorthand

•  it combines 4 bits into a single digit, written in base 16
–  a more compact representation of the same information

•  hex uses the symbols A B C D E F for the digits 10 .. 15
 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0000 1 0001 2 0010 3 0011
4 0100 5 0101 6 0110 7 0111
8 1000 9 1001 A 1010 B 1011
C 1100 D 1101 E 1110 F 1111

Example:

•  10100110110110

