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Summary. A standard (data-analytic) approach to statistical model specification, prac-
ticed with equal vigor in both Bayesian and non-Bayesian approaches to model-building,
involves the initial choice, for the structure of the model, of one or another of a variety
of standard parametric families, followed by modification of this initial choice—once data
begin to arrive—if the data suggest deficiencies in the original specification. In this paper
(a) we argue that this approach is formally incoherent, because it amounts to using the
data both to specify the prior distribution on structure space and to update using this
data-determined prior; (b) we identify two approaches to avoiding (at least in principle,
and with a fair amount of data) the incoherence in (a): (1) Bayesian semi-parametric
modeling and (2) three-way out-of-sample predictive validation; (c) we provide details on
implementing (2); (d) we argue that to make progress in coherent Bayesian model speci-
fication in complicated problems You (the modeler) have to either implicitly or explicitly
choose a utility structure which defines, for You, when the model currently being exam-
ined is “good enough”; (e) we argue that it is best to make this choice explicitly on the
basis of real-world considerations regarding the use to which the model will be put; and
(f) we contrast model selection methods based on the log score and deviance information
criteria (DIC) as two examples of (e) with utilities governed by predictive accuracy.

Keywords: Bayesian model specification, DIC, model selection as a decision problem,
predictive log scoring rule, three-way out-of-sample predictive validation

1 Introduction: what is a Bayesian model?

This paper is about methods for comparing, criticizing, and specifying Bayesian statistical
models. The question in the title of this section has a bewildering array of possible answers
(e.g., in September 2005 the search string Bayesian model generated more than 3.9 million hits
at a leading web search engine, and yielded about 8,400 published articles since 1975 using the
searching capabilities of a leading electronic article data base). We regard a Bayesian model as
a mathematical framework for quantifying uncertainty about unknown quantities by relating
them to known quantities. The model will typically embody a variety of assumptions A and
judgments J, and it is desirable for A and J to arise as directly as possible from the contextual
information in the problem we study.

The most appealing approach to achieving this goal appears to be that of de Finetti (1970),
who regarded a Bayesian model as a joint predictive distribution p(y) for observables y =
(y1, - .. ,Yn) which have not yet been observed. The following examples illustrate the model
specification process from this point of view.
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1.1 Example 1: Binary outcomes, no predictors

Consider observing health outcomes over a specified time window for all patients at one hospital
with an admission diagnosis such as heart attack. In this first example we focus on the simplest
possible observables: w; is 1 if patient ¢ dies within 30 days of admission and 0 otherwise
(¢ =1, ...,n), and no predictor variables are available. As de Finetti (1930) noted, in the
absence of any other information our predictive uncertainty about the y; is exchangeable, in the
usual sense that p(y) is invariant under permutation of the labels on the patients. Continuing
to follow de Finetti, if we are willing to regard (yi, ... , yn) as part of an infinitely exchangeable
sequence of binary outcomes (meaning that we regard our uncertainty about all finite subsets
of this sequence as exchangeable), then any coherent predictive distribution p(y) can be given
the simple hierarchical representation (y;|6) ~ Bernoulli(), § ~ p(6) for some density p(6) on
(0,1), where 6 has a dual interpretation as (a) the limiting value of the mean of the y; in the
infinite sequence (which must exist by exchangeability) and (b) the marginal probability that
any of the patients in the sequence will die within 30 days of admission (which must be the
same for all patients by exchangeability). Mathematically p(f) is just a mixing distribution in
the expression

pn ) = [ T[otwi9)26)ao o

which is equivalent to the previously stated simple hierarchical model; statistically, of course,
p(#) provides an opportunity for us to quantify any (prior) information (external to the current
set of observables) about § and combine this with the information in y. Thus, in this simplest
situation, Bayesian model specification is equivalent to choosing a scientifically appropriate
prior distribution p(f); the rest of the model specification details in (1) arise directly from
exchangeability, which in turn is driven by the real-world context.

1.2 Example 2: Continuous outcomes, no predictors.

In a small elaboration of Example 1, consider predicting a real-valued observable y; for each
patient, such as a score measuring sickness on admission to hospital, in a setting in which there
are still no predictor variables. Our uncertainty about the y; is still exchangeable; de Finetti’s
(1937) representation theorem for real-valued data now gives that, if we regard (yy,...,y,) as
part of an infinitely exchangeable sequence, then any coherent joint predictive distribution p(y)
can be expressed in the hierarchical form (y;|F) ~ F, F ~ Q(F), where F is the limiting em-
pirical cumulative distribution function (CDF) of the infinite sequence (yi, ys, . . . ), which again
must exist by exchangeability. The corresponding equivalent mixture form for the predictive
distribution is

p ) = [ T[ptwlF) () @)

where D is the set of all possible CDFs (note that (1) is a special case of (2)). As in the
previous example, Bayesian model specification amounts to choosing a scientifically appropriate
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prior distribution, Q(F'). However, here the unknown distribution F' is in effect an infinite-
dimensional parameter, requiring us to put a scientifically relevant probability distribution on
D. Specifying distributions on function spaces is the task of Bayesian nonparametric (BNP)
modeling (e.g., Dey et al. 1998), which is considered in detail, e.g., in Krnjaji¢, Draper and
Kottas (2005).

1.3 Example 3: Integer-valued outcomes with a covariate

In practice, of course, in addition to outcomes y;, covariates z;; will typically be available. For
instance, in a case study (Hendriksen et al. 1984) to which we will return several times, 572
elderly people were randomized, 287 to a control (C) group (which received standard care)
and 285 to a treatment (7T') group (which received standard care plus in-home geriatric as-
sessment (IHGA), a kind of preventive medicine in which each person’s medical and social
needs were assessed and acted upon individually). A major outcome of interest in this experi-
ment was the number of hospitalizations experienced by the subjects during the two-year life
of the study. Let yf and y]C be the numbers of hospitalizations for treatment person i and
control person j, respectively, and suppose (as was true of the published results of the study)
that treatment/control (T/C) status is the only available covariate. Then the assumption of
unconditional exchangeability across all 572 outcomes is no longer automatically scientifically
appropriate. Instead the design of the experiment implies (at least initially) partial or con-
ditional exchangeability (e.g., de Finetti 1938; Draper et al. 1993) given T/C status, and this
leads by a simple generalization of the representation theorem in Example 1.2 to the Bayesian
nonparametric model

(FT’FC) ~ p(FT’FC) (3)
(f|Fr,Fg) ~ Fr and (y¢|Fr,Fo) ~ Fo.

Note that even in this rather general nonparametric framework it will be necessary to have a
good tool for discriminating between the quality of two models (here: unconditional exchange-
ability (Fr = F¢; T has the same effect as C') versus conditional exchangeability (Fr # Fg;
the T and C effects differ)).

This framework—in which (a) covariates specify conditional exchangeability assumptions
in a manner driven completely by the problem context and (b) one version or another of de
Finetti’s representation theorems reduces the model specification task to placing appropriate
prior distributions on CDFs—seems to cover much of the field of statistical inference and pre-
diction with minor extensions (e.g., multiple discrete covariates can be cross-tabulated, and
continuous covariates can be discretized; when the number of cells in the resulting layout be-
comes too large, assumptions about how those cells are related to each other become necessary).
However, placing real-world-relevant prior distributions on CDFs is not straightforward, and
the statistics profession does not have much experience with this process yet; in the meantime,
in parallel with efforts to accumulate such experience, a great deal of parametric modeling will
occur, and tools for specifying such models will often be employed. We review both paramet-
ric and nonparametric Bayesian model specification below and offer some new methodological
details.

The plan of the paper is as follows. In Section 2 we examine a data-analytic approach to
model specification which is employed frequently in both frequentist and Bayesian approaches
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to statistical work. Section 3 demonstrates that model choice is really a decision problem
which should be approached via maximization of expected utility, with a utility structure that
is sensitive to the real-world context. In Section 4 (a) we examine the log score LS, a generic
utility structure for model choice appropriate in situations where predictive accuracy is key;
(b) we establish a connection between a cross-validation version LScy of the log score idea
and the deviance information criterion DIC; and (c) we discuss a full-sample version LSpg
of the log score approach and demonstrate its small-sample superiority over LScy and DIC
for model discrimination in fixed- versus random-effects Poisson modeling. Section 5 explores
connections between LS and Bayes factors. In Section 6 we examine the question “Could the
data have arisen from model M?” and illustrate the use of an algorithm for answering this
question in a well-calibrated way, and Section 7 offers some conclusions.

2 Data-analytic model specification

The basic problem of statistical model-building can be stated as follows: In modeling our
uncertainty about future observables y = (y1,...,¥yn), We recognize that we are uncertain
about y (this might be termed first-order uncertainty), but we also acknowledge that we are
uncertain about how to specify our uncertainty about y (which might be called second-order
uncertainty). A fundamental problem in Bayesian modeling is how to cope with both of these
levels of uncertainty in a manner that is both coherent and well-calibrated. These criteria are
of course not the same: we want to be coherent in our implementation of Bayes (otherwise
there are internal inconsistencies in our probability assessments), but coherence by itself is not
enough to guarantee that our Bayesian answer is a good answer to a real-world question (we
are always free in the coherent Bayesian paradigm to insert extremely strong prior information
that is, after the fact, seen to be out of step with the world, and if we do so our Bayesian
solution will be poor indeed). This forces us to be guided, not only by coherence, but also by
calibration: as scientific collaborators we want to be free to use Bayesian methods, but if we
want to get invited back to collaborate again (and again) we had better pay attention to how
often we get the right answer (e.g., meteorologists who consistently get it wrong about when
it will rain will quickly be ignored, or fired, or both), and this is a fundamentally calibrative
activity. The objective Bayes movement (e.g., Berger 2006) has points of contact with this
view; also see Rubin (1984).

A frequently-employed data-analytic approach to model-building involves an initial choice,
for the structure of the model, of a standard parametric family, followed by modification of
the initial choice—once data begin to arrive—if the data suggest deficiencies in the original
specification; indeed, a search is typically conducted, based on the data, for the apparently
“best” model M*. This approach (e.g., Draper 1995) is formally incoherent if no attempt is
made to pay an appropriate price for having chosen the structure of the model in a data-driven
fashion: in effect it uses the data both to specify the prior distribution on structure space and
to update that prior using the same data. The result will typically be uncalibrated predictive
distributions for future data, and the lack of calibration will typically manifest itself as a bias
in favor of predictive intervals that are too narrow to accommodate the full uncertainty which
the future holds.

This dilemma, of how to approach the problem of both first- and second-order uncertainty,
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is an example of what Lindley (1985) termed Cromwell’s Rule: if the initial model choice places
zero prior probability on large regions of model space then, formally, all such regions must also
have zero posterior probability even if the data indicate that a different prior on model space
would have been better.

We are aware of only two possible solutions to the dilemma posed by Cromwell’s Rule in
Bayesian model specification: (a) Bayesian nonparametric modeling and (b) a modified data-
analytic approach that might be termed three-way cross-validation (3CV).

e As noted by, e.g., Walker et al. (2004), if we use a prior that places non-zero probability
on all Kullback-Leibler neighborhoods of all CDFs F' (both Pdlya trees (e.g., Walker et
al. 1999) and Dirichlet process mizture priors (e.g., Dey et al. 1998) succeed in this goal if
specified properly), then Bayesian nonparametric modeling directly avoids the Cromwell’s
Rule dilemma, at least for large n: as n — oo the posterior on F' will discard any incorrect
details of prior specification and will fully adapt to the actual data-generating F' (this line
of reasoning of course assumes correct exchangeability judgments). When well specified,
BNP priors on CDFs thus solve the problem by, in effect, not placing zero prior probability
on any scientifically relevant subsets of the space of all possible models.

e Three-way cross-validation solves the problem in a different way, by exploring the data
for the best model but then paying an appropriate price for the exploration. 3CV takes
the usual cross-validation idea one step further, as follows:

(1)
(2)

(3)

(4)

Partition the data at random into three (non-overlapping and exhaustive) subsets
Si.

Fit a tentative model ({likelihood + prior}) to S;. Expand the initial model in all
feasible ways suggested by data exploration using S;. Iterate until the model fit is
satisfactory (methods for assessing the fit will be examined later in this chapter).

Use the final model (fit to S;) from (2) to create predictive distributions for all
data points in S,. Compare actual outcomes with these distributions, checking for
predictive calibration. Go back to (2), change the likelihood as necessary, re-tune the
priors as necessary, and so on, to get good calibration. Iterate until the predictive
distributions accurately capture the data in both S; and Sj.

Announce the final model (fit to S; USs) from (3), and report predictive calibration
of this model on the data points in S3 as an indication of how well it would perform
with new data.

With large n it is only necessary to do steps (1-4) once; with small and moderate n it
is best to repeat the above steps several times and use Bayesian model averaging (e.g.,
Draper 1995) to combine the results.

Both of these approaches lead to uncertainty bands that are typically (and appropriately)
somewhat wider than those obtained by the data-analytic M* approach described above:

(a) If a parametric model can be found that fits the data equally well using the M* approach,
BNP modeling will typically produce predictive and inferential intervals that are some-
what wider than those from the parametric modeling, but the parametric intervals are



6 D. Draper and M. Krnjaji¢

narrower than they should be because no price was paid, in finding the “best” parametric
model, for the model search.

(b) By explicitly holding out subset S; as a proxy for future data in the 3CV approach, the
final model fit to S; U Ss will yield somewhat wider intervals than if it were fit to the
entire data set. We have no definitive results yet for the optimal fractions of data to
assign to the subsets S; (this is a subject of on-going study); we conjecture that (3, 3, 3)
is a reasonable (not far from optimal) choice. 3CV will be further explored and illustrated

elsewhere (Draper and Krnjaji¢ 2005).

3 Model selection as a decision problem

Given a method like 3CV which permits us to explore model space without forfeiting calibration,
two kinds of model specification questions (in both parametric and nonparametric Bayesian
modeling) arise:

(1) Is model M; better than M,7 (this tells us when it is reasonable to discard a model in
our search), and

(2) Is M; good enough? (this tells us when it is reasonable to stop searching).

To bring these two questions into sufficiently sharp focus to begin answering them, the terms
“better than” and “good enough” must be made more precise. The following principle, which
seems to us to be essentially self-evident, is crucial in this effort.

Model Selection Principle (MSP). It is not possible to choose a model well
without contemplating the purpose to which it will be put; for how else will you
know if the model under scrutiny is “good enough”? (Good enough for what?)

Specifying this purpose demands a decision-theoretic basis for model choice (e.g., Draper 1996;
Key et al. 1998).
It is useful to distinguish two cases:

(1) If we are going to choose which of several ways to behave in the future, then the model
has to be good enough to reliably aid in choosing the best behavior; or

(2) If instead we simply wish to make a scientific summary of what’s known, then—remem-
bering that a hallmark of good science is good prediction—the model has to be good
enough to make sufficiently accurate predictions of observable outcomes (in which the
dimensions along which accuracy is to be monitored are driven by what is scientifically
relevant).

As an example of case (1), Draper and Fouskakis (2000, 2005) (also see Fouskakis and
Draper 2002) give a case study of decision-theoretic model choice in action. The problem
they addressed was to construct a scale measuring sickness at admission to hospital for elderly
pneumonia patients, in an environment in which costs were constrained. The main issue of



Bayesian model specification 7

]
F1IM
sl
i

]

=1

-10

]
I

[ 1]
1
]

Estimated Expected Utility
-14 -12

i1 3

-16

L
C
]

;
e

o
-
N
w
N
6]

6 7 8 9 10 11 12 13 14

Number of Variables

Figure 1: Variable selection in a generalized linear model regression setting, from Draper and
Fouskakis (2000). Estimated expected utility as a function of the number of predictor variables,
in a problem involving construction of a cost-effective scale to measure sickness at hospital
admission of elderly pneumonia patients.

model specification was the usual problem of variable selection, but standard (“benefit-only”)
methods that pay attention only to how well variables predict the outcome of interest are sub-
optimal in this setting; instead a cost-benefit trade-off is needed, in which the final model should
only contain variables that predict well enough given how much they cost to collect. Draper and
Fouskakis solved this model specification problem with Bayesian decision theory, by formulating
a utility function with two components—one quantifying data collection costs associated with
the construction of a given sickness scale, and the other rewarding and penalizing the scale’s
predictive successes and failures—and maximizing expected utility (MEU). Figure 1 gives an
example of their results, in a setting with 14 predictors (chosen via standard benefit-only
methods from the 85 available variables) and 2'* = 16,384 possible models. It is evident from
the figure that the best models only have 4-6 sickness indicators and that these models are
far better at solving the real-world problem than the standard benefit-only solution (which
includes all 14 variables).

In case (2) the main goal instead is simply a summary of scientific knowledge, which suggests
(as noted above) a utility function that rewards predictive accuracy. In specifying such a utility
function in a reasonably general way—to answer model specification question (1) above, “Is
M; better than M,?"—we need a scoring rule that measures the discrepancy between an
observation y* and the predictive distribution p(-|y, M;) for that observation under model M;
given data y. As noted (e.g.) by Good (1950) and O’Hagan and Forster (2004), the optimal
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(impartial, symmetric, proper) scoring rules are linear functions of log p(y*|y).

In the spirit of the above 3CV discussion, on calibration grounds it would seem to be a
mistake to use the data twice in assessing predictive accuracy (once to make predictions, and
again with the same data to see how good they are). We will see later in this paper that this is
not necessarily true, but for now we begin our examination of the log scoring idea by revisiting
the out-of-sample predictive validation method of Geisser and Eddy (1979) and Gelfand et
al. (1992): successively remove each observation y; one at a time, construct the predictive
distribution for y; based on y_; (the data vector with y; removed) and see where y; falls in
this distribution. This motivates a cross-validation variant of the log-scoring rule (e.g., Good
1950; Gelfand and Dey 1994; Bernardo and Smith 1994): with n data values y;, when choosing

among k models M;,i =1, ...  k, find that model M; which maximizes
1 n
LScy(M;ily) = - Zlogp(yj‘Miayfj)- (4)
j=1

(Item (1) in the Appendix gives details on how to calculate p(y;|M;, y—;) via MCMC.)
It has been argued that this can be given a direct decision-theoretic justification: defining
the utility function for model 7 as

U(M;ly) = log p(y*| M;, y), (5)

where y* is a future data value, the expectation in MEU is over our uncertainty about y*.
Bernardo and Smith (1994) claim that this expectation can be closely approximated (assuming
exchangeability) by (4):

EUO4I) ~ + > logp(u;| M, y-s). (©

j=1
We shall revisit this claim below.

It can also be revealing when the predictive distributions are approximately Gaussian to
compute predictive z—scores, for observation j under model i:

o= Y~ By Mi y-y)
iy — .
V(y| Mi,y—;)
For good predictive calibration the {z;;,7 = 1,... ,n} should have mean 0 and standard devi-

ation (SD) 1 for each ¢; we often find instead that the SD is larger than 1, signifying that the
predictive uncertainty bands are not wide enough.

(7)

4 Log-score and the Deviance Information Criterion

With large data sets, in situations in which the predictive distribution has to be estimated
by MCMC, direct calculation of LScy is computationally expensive, since it requires O(n)
MCMC runs for a sample of size n (with discrete or count data the number of MCMC runs
may be smaller than n, i.e., equal to the number of unique points in the sample). In this section
we look for a computationally efficient alternative to LScy and explore the relation between
two variants of LS and a recent popular method for Bayesian model choice, the deviance
information criterion (DIC), proposed by Spiegelhalter et al. (2002).



Bayesian model specification 9

4.1 LScy and DIC

To see how a fast approximation to LScy might be obtained, it is useful to examine how the
log score works in a simple model, e.g., My: fori=1,... ,n,

p ~ N(uo,0y)
(Yilu) = N(u,o% (8)

with o known; take a highly diffuse prior on yu so that the posterior for u is approximately
. _ o?
() = i) < (5.5 ) )

where 7 is the sample mean of y = (y1,...,¥ys).- The predictive distribution for the next
observation is then approximately

(osal) = s ) < N [ (14 2] (10)

and LS¢y, ignoring linear scaling constants, is
LScv(Moly) = > Inp(y;ly—;), (11)
j=1

where as before y_; is y with observation j set aside. But by the same reasoning
p(yj|y—j) = N(g—j’arzz) ) (12)

where _; is the sample mean with observation j omitted, and o2 = ¢ (1 + ﬁ), so that

) 1 _
Inp(yjly-s) = ¢— 55~ g-j)° and
LScv(Moly) = a—c Z(yj —9-5)° (13)
=1

for some constants ¢; and ¢y with ¢, > 0. Now it is an interesting fact (related to the behavior
of the jackknife), which can be proved by induction, that

n

Z(yj —7.5)?% = CZ(.%' —7)? (14)
j=1 j=1
for some ¢ > 0, so finally for ¢, > 0 the result is that

n

LScv(Moly) = c1 — 2 > (35 — 9)%, (15)

J=1
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i.e., in Mj the log score is almost perfectly negatively correlated with the sample variance. But
in this model the deviance (minus twice the log likelihood) is

D(p) = —2Inl(uly) =co—2Inp(y|p)
= co+oes Z(yj — p)? (16)

for some c3 > 0, encouraging the suspicion that LS¢cy should be strongly related to the deviance.

Given a parametric model p(y|f), Spiegelhalter et al. (2002) define the deviance information
criterion (DIC) (by analogy with other information criteria) to be an estimate D(f) of the
model lack of fit (as measured by the deviance) plus a penalty for complexity equal to twice

the effective number of parameters pp of the model:
DIC(M|y) = D(8) + 2 pp, (17)

where 6 is the posterior mean of 8; they suggest that models with low DIC values are to be
preferred over those with higher values. When pp is difficult to read directly from the model
(e.g., in complex hierarchical models, especially those with random effects), they motivate the
following estimate, which is easy to compute from standard MCMC output:

pp = D(8) — D(9), (18)

i.e., pp is the difference between {the posterior mean of the deviance} and {the deviance
evaluated at the posterior mean of the parameters} (the popular freeware package WinBUGS
release 1.4 will estimate these quantities). In model My, pp is of course 1, and 6 = 7, so

DIC(Myly) = co +c3 Z(Z/j —9)*+2 (19)
j=1
and the conclusion is that
—DIC(My|y) = ¢1 + caLScv (My|y) (20)

for co > 0. In other words, in this simple setting, choosing a model by maximizing LScy
and by minimizing DIC are approximately equivalent behaviors. This connection was hinted
at in the discussion of Spiegelhalter et al. (2002) but was never made explicit. It is evident
that this argument readily generalizes to any situation in which the predictive distribution is
approximately Gaussian (e.g., Poisson(\) likelihoods with large A, Beta(a, ) likelihoods with
large (o + /), and so on).

As a second example of the relationship between LScy and DIC, consider a single sample
of count data, e.g., the number of hospitalizations in each of the T" and C portions of the IHGA
data (Example 3 in Section 1.3). With data of this type modelers often choose between fixed-
and random-effects Poisson model formulations: for ¢ = 1,... ,n, and, e.g., with diffuse priors,

s )\ - p(A) versus
Ml‘{ (A) ™ Poisson(\) } (21)
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Table 1: Distribution of number of hospitalizations in the IHGA study over a two-year period.

Number of Hospitalizations
Group 0 1 2 3 4 5 6 7| n Mean SD
Control | 138 77 46 12 8 4 0 2|287 0.944 1.24
Treatment | 147 83 37 13 3 1 1 0|28 0.768 1.01

(Bo,0®)  ~  p(Bo,0?)
(yi|Ai)  "~* Poisson(\;)
log(Ai) = Bo + €;
(eso®) =~ N(0,07)

MQZ (22)

M, is of course a special case of My with (02 =0,A= eﬁo); the likelihood in M, is a Lognormal
mixture of Poissons (this is often similar to fitting a Negative Binomial distribution, which is
a Gamma mixture of Poissons).

We conducted a partial-factorial simulation study with factors {n = 18, 32,42, 56,100},
{Bo = 0.0,1.0,2.0}, {¢? = 0.0,0.5,1.0,1.5,2.0} in which (data-generating mechanism, assumed
model) = {(My, My), (M, Ms), (Ms, My), (Ms, Ms)}; in each cell of this grid we used 100 sim-
ulation replications. Figures 2 and 3 summarize some of the results of this simulation. The
first of these two Figures demonstrates that when the assumed model is M; (the fixed-effects
Poisson), LScy and DIC are almost perfectly negatively correlated (we have a mathematical
explanation of this which will be presented elsewhere); the second Figure shows by contrast
that when the assumed model is M, (the random-effects Poisson), LScy and DIC are less
strongly negatively correlated, but (not shown in the Figure) the correlation increases with n.

As a further example of the correspondence between LScy and DIC, the full IHGA data are
given in Table 1. Evidently IHGA lowered the mean hospitalization rate (for these elderly Dan-
ish people, at least) by (0.944 — 0.768) = 0.176, which is approximately a 100 (W)% =
19% reduction from the control level, a difference that’s large in clinical terms; as usual, the
next question is whether this difference is large in statistical terms, and a model is needed to
answer this second question.

Four possible models for these data (not all of them good) are as follows:

e A two-independent-sample Gaussian model with diffuse priors (based on the usual advice
that in repeated sampling the two-independent-samples z or ¢ procedures are robust to
non-normality);

e A one-sample Poisson model with a diffuse prior, which in effect assumes that the treat-
ment and control As are equal;

e A two-independent-sample Poisson model with diffuse priors, which is equivalent to a
fized-effects Poisson regression (FEPR) model; and

e a random-effects Poisson regression (REPR) model (which may be preferable to the
FEPR model because the C and T variance-to-mean ratios (VIMRs) are 1.63 and 1.32,
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Table 2: DIC and LScy results for four models applied to the IHGA example.

Model | D() D(f) Pp DIC  LSecy
1 (Gaussian) | 1749.6 17456 399 17535 —1.552
2 (Poisson, | 44009 14088  1.02 15009 —1.316
common \)
3 (FEPR,
different As)

1495.4 1493 .4 1.98 14974 —1.314

12757  1132.0 1432 14183
4 (REPR) 12747 1131.3 1435 14182 —1.180
12744 11302 1442 14186

respectively, and the FEPR model assumes that these ratios are 1):

(yi |A) =" Poisson();)
log(Ai) = Bo+ Bz +e; (23)
(eifo?) = N(0,0)

(50, b1, az) ~ diffuse ,

where x; = 1 is a binary indicator for T'/C status.

The DIC and LScy results on these four models are given in Table 2 (the three REPR rows
were based on different monitoring runs, all of length 10,000, to give an idea of the size of the
Monte Carlo noise level in the components of DIC.) As o, — 0 in the REPR model, the result
is the FEPR model, with pp = 2 parameters; as g, — 00, in effect all subjects in the study
have their own A and pp would be 572; in between at o, = 0.675 (the posterior mean), DIC
estimates that there are about 143 effective parameters in the REPR model, but its deviance
D(#) is so much lower that it wins the DIC contest handily. The correlation between LSy
and DIC across these four models turned out to be —0.98, providing another example of a
situation where the two approaches lead to similar model choice behaviors (this is due to the
rather large samples in both the 7" and C groups in the experiment).

The conclusion we draw from the results presented so far is that, while DIC does not have
a direct utility-based decision-theoretic basis, it may in some cases provide a computationally
quick approximation to LScy (since DIC requires only one MCMC run rather than the O(n)
runs needed for direct implementations of LScy ). However, it is worth emphasizing the point
made by Spiegelhalter et al. (2002) that DIC can be quite sensitive to parameterization. For
example, y = (0,0,1,1,1,1,2,2,2,2,3,3,3,4,4,5,6) is a data set with n = 17 observations
generated with parameters (6, r) = (0.82,10.8) from the negative binomial distribution, in the
parameterization under which the marginal sampling distribution is

C(yi +7)
T(y: +1)T(r)

y has mean 2.35 and VIMR 1.22. Using a Uniform(0, 1) prior for # and a popular (if possibly
ill-advised) prior for » (I'(e,€) with € = 0.001), the effective number of parameters pp for the

p(yilf,r) = 0"(1—0)¥ ;
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negative binomial model (which fits the data quite well) is estimated to be —66.2, when of course
the right answer is 4+2.0. The basic problem is that the MCMC estimate of pp can be quite
poor if the marginal posteriors for one or more parameters (using the parameterization that
defines the deviance) are far from normal. Reparameterization can help—here, for example,
working with Uniform(—c, c¢) priors on logit(6) and log(r), with ¢ chosen large enough in each
case not to truncate the likelihood function, yields pp = 1.1—but may nevertheless lead in
other problems to regrettable estimates of pp. The log score approach to model choice does
not suffer from any such instability as a function of parameterization.

4.2 Full-sample log score

Evidently, while DIC can sometimes provide an accurate and fast (indirect) approximation to
LScy, it would be useful to have a fast direct approximation. An obvious thing to try is the
following full-sample version of LS (cf. Laud and Ibrahim 1995): in the one-sample situation,
for instance, compute a single predictive distribution p*(-|y, M;) for a future data value with
each model M; under consideration, based on the entire data set y (without omitting any
observations), and define

LSrs(Mily) = Zlogp (ysly, M) (24)

As noted earlier, the naive approach to calculating LScy, when MCMC is needed to compute
the predictive distributions, requires O(n) MCMC runs, one for each omitted observation;
by contrast LSps needs only a single MCMC run, making its computational speed (a) O(n)
times faster than naive implementations of LScy and (b) equivalent to that of DIC. Note
also that the log score approach works equally well with both parametric and nonparametric
Bayesian models (this remark applies to both LScy and LSrs), whereas DIC' is only defined
for parametric models.

Recall the claim by Bernardo and Smith (1994), discussed earlier, that LScy approximates
the expectation of logarithmic predictive utility:

1 n
E[U(Mily)] ~ LSev = — > logp(y;| M,y ;) (25)

=1

Mukhopadhyay et al. (2005) recently proved that the difference between the left- and right-
hand sides of (25) does not vanish for large n but is instead O,(v/n). (However unpleas-
ant, this fact does not automatically invalidate the use of LScy as an approximate expected
utility, since when comparing two models we effectively look at the difference between two
LSy values, and the bias in using LScy as an approximation to E [U(M;|y)] should largely
cancel out.) We have proved, under mild regularity conditions similar to those specified by
Mukhopadhyay et al. (2005), that LSpg is free from this deficiency: the difference between
LSps = 3 371 logp*(y;|y, M;) and E[U(M;|y)] and is 0,(1) (this proof will be presented else-
where).

It is natural to wonder if this asymptotic superiority of LSrs over LScy translates into
better small-sample performance; this is the subject of the next section.
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Table 3: Percentages of correct model choice and mean absolute difference in LScy between
M, and My when the right model is M, for n = 32.

n = 32

% Correct Decision Mean Absolute Difference in LScy

Bo Bo
o? 0 1 o? 0 1
0.10| 31 47 0.10 0.001 0.002
0.25 | 49 85 0.25 0.002 0.013
0.50 | 76 95 0.50 0.017 0.221
1.00 | 97 100 1.00 0.237 4.07
1.50 | 98 100 1.50 1.44 17.4
2.00 | 100 100 2.00 12.8 63.9

4.3 Log-score model discrimination

We now have three behavioral rules: maximize LScy, maximize LSgrg, minimize DIC. With
(e.g.) two models to choose between, how accurately do these behavioral rules discriminate
between M; and M5?

As an extension of the previous simulation study, we generated data from the random-
effects Poisson model M, (equation (22)) and computed LScy, LSps, and DIC for models M;
(the fixed-effects Poisson model (21)) and M, in the full-factorial grid {n = 32,42,56,100},
{Bo = 0.0,1.0}, 0% = 0.1,0.25,0.5,1.0, 1.5, 2.0}, with 1000 simulation replications in each cell
(the simulation was performed on a cluster of 100 Linux-based CPUs), and we monitored the
percentages of correct choice for each model specification method (in this simulation M; is
always correct).

Table 3 gives examples of the results of this simulation, using LScy for illustration. Even
with a sample size of only 32, LScy makes the right model choice more than 90% of the time
when o2 > 0.5 for 8y = 1 and when o? > 1.0 for 3, = 0 (these are parameter ranges which
lead to large enough amounts of extra-Poisson variability that random-effects models would be
contemplated). The right part of the table shows that even rather small differences in LScy
can separate correct and incorrect model choice, which encourages the question “How do you
know when a difference on the log score scale is big?” (we return to this point in Section 6).
The graphs in Figure 4 compare Bayesian decision-theoretic power curves for LS¢y, LSps,
and DIC. Remarkably, not only is LSrs much quicker computationally than LSy, in our
simulation environment it was also more accurate with small samples of data at identifying the
correct model than LScy or DIC.

To summarize our comparative findings, in computational efficiency

LScy < DIC = LSps, (26)

and in fixed- and random-effects Poisson modeling the results in model discrimination power
are

LScy = DIC < LSps. (27)
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5 Connections with Bayes factors

An extensively explored alternative to log-score-based predictive model choice is Bayes factors
(e.g., Jeffreys 1939; Berger and Sellke 1987; Berger and Pericchi 1996, 2001; Kass and Raftery
1995; Pericchi 2004; O’'Hagan and Forster 2004), which implicitly perform model comparison
on the probability scale:

) = Lom] G o

posterior _ prior _ Bayes
odds - odds factor /-
On the surface, in fact, there appears to be a connection between the two approaches: Kass
and Raftery (1995) note that

]

log p(y| M) — log p(y| M) (29)
= LS*(Mily) — LS*(M.ly),

where

LS*(Mily) = logp(y|M;) (30)
= log [p(y1|M;) p(ye|yr, Mi) - - - p(Ynly1, - - - s Yn—1, M;)]

logp(yllM) + Zlogp(y]|y1a s ayj—la Ml)

i=2

Thus the log Bayes factor equals the difference between the models in something that looks like
a log score, which gives rise to the question “Isn’t the rule {choose the model with the biggest
LScy or LSpg} equivalent to choosing M; whenever the Bayes factor in favor of M; exceeds
177

Looking more closely at (30), the answer is no: crucially, LS* is defined via sequential
prediction of y, from yi, ys3 from (y1,¥y2), and so on, whereas LScy and LSgs are based on
averaging over all possible out-of-sample predictions. This distinction really matters: as is well
known, with diffuse priors Bayes factors are hideously sensitive to the particular form in which
the diffuseness is specified, but this defect is entirely absent from LScy and LSgg.

As an example, with non-negative integer-valued data y = (y1, ... , yn), consider two models:

e M; = Geometric(6,) likelihood with Beta(a;, ;) prior on 6
e M, = Poisson(f;) likelihood with Gamma(as, B2) prior on 6s.

The Bayes factor in favor of M; over M, is (Bernardo and Smith 1994)

T(o1 + BT (n + a)T(s + B1)T (a2)(n + Ba)* "2 ([ [ %)
[(on)T(B)T(n+ s+ a1 + B1)T(s + az) 852,

(31)
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where s = ) ", y;. Common choices for diffuse priors would include taking (o4, 81) = (1,1)
and (ag, f2) = (€, €) for some € > 0. The Bayes factor then reduces to

L(n+1C(ny + DT(e)(n + )" ([[i %)
I'(n+ nyg + 2)T'(ny + €)e '

(32)

This goes to +00 as € | 0; in other words, the evidence in favor of the Geometric model over the
Poisson can be made as large as desired as a function of a quantity near 0 that scientifically has
no basis for unique specification. (There is nothing special about the diffuse priors used here,
e.g., the same fierce sensitivity to a prior specification with little scientific grounding appears
with a Uniform(0, ¢) prior for 6, as a function of the nearly arbitrary c.) By contrast, e.g.,

F J—
LScy(Mily) = log[( ?onl—in-ll—)gfﬁ-il-:—)sq

1 — T(og +n—1+ 61+ s;)
T z::' o [ T(By + 5:) } (%)

and

B 1 n F(az+3)
LScv(Msly) = n ;log [F(yi + 1)I'(0 + 55)

() )
Ba+n+1 Bo+n+1

where s; = >, y; (with similar expressions for LSps); both of these quantities are entirely
stable as a function of (ay, ;) and (asg, 52) near zero.

Various attempts have been made to fix this fundamental defect of Bayes factors, e.g.,
{partial, intrinsic, fractional} Bayes factors, well calibrated priors, conventional priors, intrinsic
priors, and expected posterior priors (e.g., Pericchi 2004); all of these methods appear to require
an appeal to ad-hockery which is not required by the log score approach. Some bridges can
be built between LS and BF, e.g., Mukhopadhyay et al. (2005) re-interpret LScy as the
“Gelfand-Dey (1994) predictive Bayes factor” BF“P; connections such as these are the subject
of on-going investigation. One thing that can clearly be said: despite an assertion to the
contrary in O’Hagan and Forster (2004), LSrs is not the same as Aitkin’s (1991) posterior
Bayes factor in disguise. (A sketch of the proof is given as item (2) in the Appendix.)

(34)

6 When is a model good enough?

We have demonstrated that the LSrg method described above can stably and reliably help in
choosing between two or more models (without loss of generality, consider just M; and M,);
but suppose that M; has a (substantially) higher LSrs than M,. This doesn’t say that M; is
adequate; it just says that M; is better than My, which still leaves open model specification
question (2) in Section 3: Is M; good enough?

As mentioned in Section 3, under the Model Selection Principle a full judgment of ade-
quacy requires real-world input (“To what purpose will the model be put?”), so it does not
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seem possible to propose generic methodology to answer question (2), but a somewhat related
question—“Could the data have arisen from a given model?”—can be answered in a general
way by simulating from that model many times, developing a distribution of (e.g.) LSrg values,
and seeing how unusual the actual data set’s log score is in this distribution.

This is related to the posterior predictive model-checking method of Gelman et al. (1996);
however, this sort of thing cannot be done naively, or the result will be poor calibration—indeed,
Robins et al. (2000) have demonstrated that the Gelman et al. procedure may be (sharply)
conservative. Using a modification of an idea suggested by Robins et al., we have developed a
method for accurately calibrating the log score scale.

The inputs to our procedure are: (1) a data set (e.g., with regression structure); (2) a model
(which can be parametric or non-parametric). To take a simple example to fix ideas, consider
a one-sample data set of counts and suppose the goal is to judge whether this data set could
have arisen from the model (call it (x))

(A) ~ diffuse (35)
(y:|\) ~ Poisson()\)

Step 1:| Calculate LSpgs for this data set; call this the actual log score (ALS). Obtain the
posterior for A given y based on this data set; call this the actual posterior.

for (i in 1:m1 ) {

make a lambda draw from the actual posterior;
call it lambdal i ]

generate a data set of size n from the second
line of model (*) above, using
lambda = lambdal i ]

compute the log score for this generated
data set; call it LS[ i ]

}

The output of this loop is a vector of log scores; call this V.LS. Locate the ALS in the distribu-
tion of LSrg values by computing the percentage of LSrs values in V.LS that are no greater
than ALS; call this percentage the unadjusted actual tail area (suppose, e.g., that this comes
out 0.22). So far this is just Gelman et al. with LSpg as the discrepancy function. We know
from our own simulations (summarized below) and the literature (Robins et al. 2000) that
this tail area (a p-value for a composite null hypothesis, e.g., Poisson(A) with A unspecified) is
conservative, i.e., with the 0.22 example above an adjusted version of it that is well calibrated
would be smaller (and might be much smaller, e.g., 0.02). We have modified and implemented
one of the ways suggested by Robins et al., and we have shown that it does indeed work even
in rather small-sample situations, although our approach to implementing the basic idea can
be computationally intensive.
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for ( j in 1:m2 ){

make a lambda draw from the actual posterior;
call it lambdax.

generate a data set of size n from the second line
of model (%) above, using lambda = lambdax;
call this the simulated data set

repeat steps 1, 2 above on this
simulated data set

3

The result will be a vector of unadjusted tail areas; call this V.P. Compute the percentage of
tail areas in V.P that are no greater than the unadjusted actual tail area; this is the adjusted
actual tail area.

The claim is that the 3-step procedure above is well-calibrated, i.e., if the sampling part of
model (x) really did generate the observed data, the distribution of adjusted actual tail areas
obtained in this way would be uniform, apart from simulation noise. Step 3 in this procedure
solves the calibration problem by applying the old idea that if X ~ Fx then Fx(X) ~ U(0,1).
Our claim of calibration can be verified by building a further loop around steps 1-3 as follows:

Choose a lambda value of interest; call it lambda.sim
for ( k in 1:m3 ) {

generate a data set of size n from the
second line of model (%) above, using
lambda = lambda.sim; call this the
validation data set

repeat steps 1-3 on the validation data set

}

The result will be a vector of adjusted p-values; call this V. Pa. We have verified (via simulation)
in several simple (and some less simple) situations that the values in V.Pa are close to U(0,1)
in distribution.

Figures 5—8 summarize our results and illustrate uncalibrated and calibrated p-values from
one-sample Poisson and Gaussian models. Consider, for example, the case (n = 100, A = 0.14)
in the fourth row and first column of Figure 5: if the Gelman et al. p-values came out 0.35 in
this situation, it would be natural to conclude that the data could very well have come from
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Null Poisson model: Uncalibrated p—values
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Figure 6: Poisson model, calibrated p-values.
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Figure 7: Gaussian model, uncalibrated p-values.
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Figure 8: Gaussian model, calibrated p-values.
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the Poisson model, but this part of Figure 5 demonstrates clearly that in fact an uncalibrated
tail area of 0.35 with (n = 100, A\ = 0.14) is highly unusual under the Poisson model. Our
procedure solves the calibration problem by asking “How often would you get 0.35 or less for an
uncalibrated tail area in this situation?”, and it is evident from Figure 5 that the answer is not
very often (in fact, only about 0.035 of the time, i.e., the calibrated version of the uncalibrated
Gelman et al. p-value is 10 times smaller). Figure 5 shows that the calibration of the Gelman et
al. unadjusted approach improves, even for small n, as A increases, but Figure 7 demonstrates
that in the Gaussian model with both x and ¢? unknown, the Gelman et al. unadjusted
approach is poorly calibrated across the entire subset {—1 < p < +1} x {0.1 < ¢% < 10}
of parameter space we examined, and things actually seem to get worse as n increases. Our
adjusted results, by contrast (Figures 6 and 8), are nearly perfectly calibrated for all parameter
values and sample sizes examined.

7 Conclusions

We draw the following conclusions from the results summarized above.

e In many problems Bayesian model specification = {exchangeability judgments plus non-
parametric (BNP) modeling}.

e BNP is one way to avoid the dilemma posed by Cromwell’s Rule in Bayesian model
specification; three-way cross-validation (3CV) is another. The goal in model choice is to
pay attention both to coherence and to calibration.

e Model Selection Principle (MSP): It is not possible to choose a model well without
contemplating the purpose to which it will be put; for how else will you know if the model
under scrutiny is “good enough”? (Good enough for what?)

e The MSP implies that model choice is really a decision problem and should be approached
via maximization of expected utility, with a utility structure that is sensitive to the real-
world context.

e We believe that investigators should spend time figuring out an appropriate utility struc-
ture for model choice in each problem they tackle. For people in a hurry, when the goal
is to make an accurate scientific summary of what’s known about something, the predic-
tive log score has a sound generic utility basis and can yield stable and accurate model
specification decisions.

e DIC can be thought of as a fast approximation to the leave-one-out predictive log score
(LScy), but DIC can behave unstably as a function of parameterization (predictive log
scores do not suffer from this defect).

e The full-sample log score (LSpg) is n times faster than naive implementations of LScy,
has better small-sample model discrimination power than either LScy or DIC, and has
better asymptotic behavior than LS¢y .
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(Ordinary) Bayes factors are highly unstable when context suggests diffuse prior infor-
mation; many methods for fixing this have been proposed, most of which seem to require
an appeal to ad-hockery which is absent from the LSrg approach.

e The basic Gelman et al. (1996) method of posterior predictive model checking is badly

calibrated: when it yields a tail area of, e.g., 0.4, the calibrated equivalent may well be
0.04 or even 0.004.

e We have modified an approach suggested by Robins et al. (2000) to help answer the

question “Could the data have arisen from model M?” in a well-calibrated way.

Appendix

(1)

Calculation of the height of a posterior predictive density via MCMC. When para-
metric model M; is fit via MCMC, the predictive ordinate p(y;|y—;, M;) in LScy or p(y*|y, M;)
in LSpg is easy to approximate (cf. Gelfand and Mukhopadhyay 1995): with m identically
distributed (not necessarily independent) MCMC monitoring draws 6y, from p(8|y, M;),

p(y*ly, M;) = / p(y* 16, Mi)p(6ly, M;)d6
= Ey,m;) [P(y*16, M;)] (36)

1 m
= —E p(y* |6k, M;).
m
k=1

LSpg is different from the posterior Bayes factor. Consider the likelihood part of a
IID

(parametric) model Mj: (y;|6;, M;) ~ p(yi|0;, M;) (j = 1,2), with prior p(6,|M;) for model M;.
The ordinary Bayes factor involves comparing quantities of the form

p(y|M;) = /|:Hp(yi|9j:Mj)] p(0;]M;) db;,
i=1
= Eg;m;)L(05]y, M;), (37)

i.e., the Bayes factor involves comparing expectations of likelihoods with respect to the priors
in the models under comparison (this is why ordinary Bayes factors behave so unstably with
diffuse priors). Aitkin (1991; posterior Bayes factors (PBF)) suggested computing expectations
instead with respect to the posteriors, i.e., favor model M; if log I_/f > log ;,Awhere

log L# = log / [Hp(yi\%,Mj)] p(0;ly, M;) db;. (38)

i=1

This solves the problem of sensitivity to a diffuse prior but creates new problems of its own,

(&

.g., it is incoherent. It may seem at first glance (e.g., O’Hagan and Forster (2004) asserted

this) that the PBF is the same thing as favor model M; if

n LSps(Mily) > n LSrs(Maly). (39)
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But this is not so:

n
LSps(M5 1) = tog ] | [ ptules 36 (651, M) a8y (40)
i=1
and this is not the same because the integral and product operators in (38) and (40) do not
commute.
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