COS 521 Problem Set 1
Fall 2009

Due Dates:

Wed Sept. 30 for full credit, no collaboration
Wed Oct. 7 for ¾ credit, collaboration allowed

Site all sources

1. As I have defined it, an AVL tree is a binary search tree in which every node is a 1,1-node or a 1,2-node, with the conventions that every leaf (no missing children) has rank zero and every missing node has rank –1. (Thus a leaf is a 1,1-node.) Give an algorithm for rebalancing an AVL tree after a deletion in
[image: image1.wmf]O(log)

n

time. One approach: modify the deletion rebalancing algorithm for rank-balanced trees (in which 2,2-nodes are allowed) so that it works for AVL trees; that is, it does not create any 2,2-nodes.

Note: The deletion rebalancing algorithm for rank-balanced trees appears in Figure 3 of the paper “Rank-Balanced Trees,” which is on the course website. The caption in that figure is incorrect: the statement “If q is a 2-child…” should say “The top case occurs with q a 1-child only if q is a leaf. In this case, deletion of q makes p a leaf of rank one, which is not allowed, even though p is a 2,2-node.”

2. Suppose one begins with an AVL tree containing n nodes, of which k are 1,2-nodes, and does a sequence of d deletions (and no insertions), using the solution to Problem 1 to rebalance. Prove or disprove: The total time for rebalancing is
[image: image2.wmf]O().

kd

+

3. Suppose one begins with an empty AVL tree and does a sequence of m insertions and d intermixed deletions, using the standard rebalancing algorithm for insertions (Figure 2 in the paper) and the solution to Problem 1 to rebalance after a deletion. Prove or disprove: The total time for rebalancing is
[image: image3.wmf]O().

md

+

_1315122809.unknown

_1315122848.unknown

_1315122695.unknown

