
[image: image1.wmf]
Fall 2009

Due Wed. Dec. 2

No collaboration on Problem 1, collaboration allowed on Problem 2

1. Consider a random bipartite multigraph G with vertex set
[image: image2.wmf],

AB

È

[image: image3.wmf]An

=

and
[image: image4.wmf],

Btcn

=³

 with each vertex in A connected to two vertices in B selected uniformly and independently at random. (A vertex in A is allowed to select the same vertex in B twice, hence the graph can be a multigraph; that is, it can contain multiple arcs). Prove that, for c a large enough constant, the probability that G contains a perfect matching, namely a set of n edges, no two having a common end vertex, is
[image: image5.wmf]1O(1/).

t

-

 This result implies the claim in class that if two hash functions are chosen at random, the probability that they can be used in a perfect hashing scheme is
[image: image6.wmf]1O(1/).

t

-

 Such a scheme maps each of n items to one of its two hash positions.

Hint: As discussed in class, by Hall’s Theorem there is a perfect matching if and only if for every non-empty subset S of A, the set of vertices T in B adjacent to least one vertex in A satisfies
[image: image7.wmf].

TS

³

 Estimate the probability that this condition fails by summing, over all possible subsets S contained in A and T contained in B such that
[image: image8.wmf]1,

TS

=-

 the probability that all arcs with an end in S have their other end in T. For a fixed S and T, if
[image: image9.wmf]Ak

=

 this probability is at most
[image: image10.wmf]2

((1)/).

k

kt

-

 The sum over all relevant subsets is
[image: image11.wmf]2

n

k

=

å

[image: image12.wmf](

)

n

k

[image: image13.wmf]2

1

((1)/).

k

t

k

kt

-

æö

-

ç÷

èø

 To bound this sum, use Stirling’s approximation,
[image: image14.wmf]!(1O(1/))(2)(/)

n

nnnne

p

=+

 and the formula
[image: image15.wmf]!/(!()!).

n

k

nknk

æö

=-

ç÷

èø

 How does your result depend on the value of c?

2. Consider cuckoo hashing with linear probing, which operates as follows. Up to n items are to be stored in a table of size t, one item per table location. Two hash functions
[image: image16.wmf]1

h

 and
[image: image17.wmf]2

h

are chosen independently and uniformly at random, each mapping the universe of possible items into table locations. Assume that the table locations are
[image: image18.wmf]0,...,1.

t

-

 Let d be a fixed, small positive integer, 2 for example. An item x is stored at one of the up to 2d locations
[image: image19.wmf]1

(())

hxi

+

mod t,
[image: image20.wmf]2

(())

hxi

+

mod t for
[image: image21.wmf]0.

id

£<

 Thus, the algorithm to find an item x consists of looking for it in positions
[image: image22.wmf]11

(),(()1)

hxhx

+

mod
[image: image23.wmf]1

,...,(()1)

thxd

+-

 mod t,
[image: image24.wmf]22

(),(()1)

hxhx

+

 mod
[image: image25.wmf]2

,...,(()1)

thxd

+-

 mod t. Either this search finds it, or it is not in the table. The “mod t” is to allow wrap-around of the table: the next position after
[image: image26.wmf]1

t

-

is 0. Note that the search intervals for
[image: image27.wmf]1

()

hx

and
[image: image28.wmf]2

()

hx

may overlap. Searching for an item requires at most 2d probes in the table. This lookup method is a two-hash version of linear probing. Deletion is done by finding an item and deleting it from its position.

(a) Describe how to insert a new item using a “cuckoo” strategy, which finds a chain of displacements leading to an empty table position, so that each item can be bumped to the next position, and the last item bumped moves to the empty position. Note that a bumped item can move to any of its
[image: image29.wmf]21

d

-

 or fewer alternative positions. Your strategy for finding a sequence of displacements should use breadth-first search.

(b) Derive an upper bound in terms of d and t on the probability that, given n insertions starting from an empty table, your insertion strategy will succeed in inserting all n items.

(c) Derive an upper bound on the probability that an insertion will inspect k items before finding a displacement sequence.

(d) Derive an upper bound on the probability that an insertion will have a shortest displacement sequence of length j.
(e) Based on your results, what can you say about the efficiency of this method for
[image: image30.wmf]1

d

>

 as compared to standard cuckoo hashing (the special case in which
[image: image31.wmf]1

d

=

)?

_1319972654.unknown

_1319977025.unknown

_1319978915.unknown

_1320574821.unknown

_1320574845.unknown

_1319979066.unknown

_1319979187.unknown

_1319977167.unknown

_1319977259.unknown

_1319977143.unknown

_1319974743.unknown

_1319976997.unknown

_1319972674.unknown

_1319972069.unknown

_1319972281.unknown

_1319972319.unknown

_1319972500.unknown

_1319972520.unknown

_1319972433.unknown

_1319972294.unknown

_1319972183.unknown

_1319972242.unknown

_1319972123.unknown

_1319971504.unknown

_1319972040.unknown

_1319972052.unknown

_1319971870.unknown

_1319971991.unknown

_1319970887.unknown

_1319970942.unknown

_1319970523.unknown

