COS 521 Problem Set 3
Fall 2009

Due Wednesday, Oct. 28

Collaboration allowed on 1 and 2, not 3
1. Give a detailed implementation of an implicit binomial heap. Your implementation should support the operations of making an empty heap, insertion, and deleting the minimum. Making a heap should take
[image: image1.wmf]O(1)

time; insertion or deleting the minimum should take
[image: image2.wmf]O(log)

n

time, All these bounds should be worst-case. The representation should consist of a single array of n positions, with one position for each item in the heap, plus a constant number of additional values, such as indices of heap positions or the size of the heap. You should implement the classical (eager) version of a binomial heap, which consists of a collection of perfect half-ordered half trees, at most one per rank. Do you think this data structure is better or worse than a standard implicit heap? Why?

2. Perhaps a more natural version of the dense algorithm for cycle detection is the following: for each vertex y we maintain a list of the incoming arcs (x, y), sorted by the value of k(x) the last time the arc was traversed. Each time an arc (x, y) is traversed, it is moved to its new, correct position in this list. We maintain each such list in a data structure that supports insertions and deletions. Each arc (x, y) in the list has a value which is the sum of k(x) when the arc was most recently traversed plus the number of arcs following (x, y) in the list. The data structure supports queries of the form, given an arc, return its value. It also supports queries of the form, what is the highest value of an arc in the list? Each time an arc is moved in such a list, we ask for the maximum value of an arc in the list, and increase k(y) to this value, if it is larger than the current k(y). After such an increase, all arcs (y, z) in out(y) with priority no greater than the new k(y) are added to A, the set of candidate arcs for traversal. The remaining details are like the original algorithm.
(a) Give a detailed implementation of this version of the algorithm. What is a good data structure to represent the incoming arc lists?

(b) Give a detailed analysis of the running time of your implementation. Give a bound on the total number of arc traversals, and a bound on the time per operation on the incoming arc list data structures.

3. (Extra Credit) Give a class of examples on which your algorithm given in 2(a) runs in your time bound given in 2(b).

_1317031976.unknown

_1317032008.unknown

