COS 521 Problem Set 2
Fall 2009
Collaboration Allowed on 1 and 2, not on 3
Due Wed. Oct. 14
1. (A bad example for binary search trees without rebalancing) The objective of this problem is to demonstrate the claim I made in class that the most obvious way to do deletion without rebalancing fails miserably. Consider a binary search tree in which each node has an integer rank, and every child (other than missing ones) has rank difference 1 or 2. Our insertion algorithm is exactly the same as the insertion algorithm for AVL trees, and, indeed, as long as there are no deletions the tree remains an AVL tree. (All leaves have rank 0, all nodes are 1,1- or 1,2-nodes.) We store with each node a bit encoding its rank difference (one or two). To do a deletion, we swap the item to be deleted with its successor (or predecessor) if necessary, so that it is in a node with at least one missing child. If it is in a leaf, we merely delete the leaf. (The parent now has a new missing child.) If it is in a node with one child (and one missing child), we delete it and make its child a child of its parent. We change no rank differences; thus the child retains whatever rank difference (one or two) it had. Deletion may create a 2,2-node, but it does not create any rank differences greater than two (other than of missing children). It can, however, increase the rank of leaves, so that they no longer have rank zero. For arbitrary n, give a sequence of
[image: image1.wmf]O()

n

intermixed insertions and deletions that, starting from an empty tree, produces a tree whose depth is
[image: image2.wmf]()

n

W

(at least some positive constant times n).
2. (A data structure to meet the working set bound) Design a dictionary data structure that supports insertions and deletions in
[image: image3.wmf]O(log)

n

time worst-case, and an access of an item x in
[image: image4.wmf]O(log(2))

w

+

 time worst-case, where w is the number of distinct items inserted or accessed since x was last inserted or accessed. Use only binary comparisons of keys to make decisions: no hashing allowed.

3. (Extra credit) Improve the data structure of Problem 2 so that the time bound per insertion is
[image: image5.wmf]O(1)

and the time for a deletion is
[image: image6.wmf]O(log(w+2)),

worst-case. In an insertion, you can assume that the item is not in the data structure; otherwise, no bound better than
[image: image7.wmf]O(log)

n

is possible. (Why?) Are these bounds possible with a single binary search tree? What if all the bounds are amortized?
Note: splay trees do not solve problem 2, since their bounds are amortized, not worst-case.

_1315735090.unknown

_1315735212.unknown

_1315735284.unknown

_1315737857.unknown

_1315734900.unknown

_1315734851.unknown

