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A Simpler Minimum Spanning Tree 
Verification Algorithm 

V. King I 

Abstract. The problem considered here is that of determining whether a given spanning tree is a minimal 
spanning tree. In 1984 Koml6s presented an algorithm which required only a linear number of comparisons, but 
nonlinear overhead to determine which comparisons to make. We simplify his algorithm and give a linear-time 
procedure for its implementation in the unit cost RAM model. The procedure uses table lookup of a few simple 
functions, which we precompute in time linear in the size of the tree. 
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1. Introduction. The problem of determining whether a given spanning tree in a 
graph is a minimal spanning tree has been studied by Tarjan [61, Koml6s [4], and most 
recently by Dixon et al. [1]. Tarjan's 1979 algorithm uses path compression and gives 
an almost linear running time. Koml6s's algorithm was the first to use a linear number 
of comparisons, but no linear-time method of deciding which comparisons to make has 
been known. Indeed, a linear implementation of this algorithm was not thought possible, 
see [4] and [ 1]. The only known linear-time algorithm for this problem [ 1] combines the 
techniques of both [6] and [4], using the Koml6s algorithm to process small subproblems 
via preprocessing and table lookup. 

These verification methods and the method presented here use the fact that a spanning 
tree is a minimum spanning tree iff the weight of each nontree edge {u, v} is at least the 
weight of the heaviest edge in the path in the tree between u and v. These methods find 
the heaviest edge in each such path for each nontree edge {u, v} in the graph, and then 
compare the weight of {u, v} to it. 

The "tree-path" problem of finding the heaviest edges in the paths between specified 
pairs of nodes ("query paths") arises in the recent randomized minimum spanning tree 
algorithm of Karger et al. [3]. That algorithm is the first to compute the minimum 
spanning tree in linear expected time, where the only operations allowed on edge weights 
are binary comparisons. The solution to the tree-path problem is the most complicated 
part of these randomized algorithms, which are otherwise fairly simple. 

The Koml6s algorithm is simplified by use of the following observation: If T is a 
�9 spanning tree, then there is a simple O(n) algorithm to construct a full branching tree B 
with no more than 2n edges and the following property: 

Let T(x, y) denote the set of edges in the path in T from node x to node y, and let 
B(x, y) denotes the set of edges in the path in B from leaf x to leaf y. 
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The weight of  the heaviest edge in T (x, y) is the weight of the heaviest edge in B (x, y). 
Therefore it suffices to use the version of  the Koml6s algorithm for full branching 

trees only, which is much simpler than his algorithm for general trees. 
The second part of  this paper is to show that this portion of Koml6s's algorithm has 

a linear-time implementation using table lookup of  a few simple functions. These tables 
can be constructed in time linear in the size of  the tree. As in Dixon et al.'s algorithm, the 
model of computation is a unit cost RAM with word size (-)(log n). The only operations 
used on edge weights are binary comparisons. 

In contrast. Dixon et al.'s algorithm separates the tree into a large subtree and many 
"microtrees" of size O( lg lgn) .  Path compression is used on the large subtree. The 
comparison decision tree needed to implement Koml6s's strategy for each possible con- 
figuration of microtree and possible set of  query paths in the microtree is precomputed 
and stored in a table. Each microtree, together with its query paths in the input spanning 
tree, is encoded and then the table is used to look up the appropriate comparisons to 
make. 

In the next section the construction of  B is described, and the property of  B is proved. 
In Section 3 we restate Koml6s's algorithm for determining the maximum weighted edge 
in each of  m paths of  a full branching tree and describe its implementation. 

2. Boruvka  'II'ee Property.  Let T be a spanning tree with n nodes. Tree B is the tree 
of  the components that are formed when the Boruvka algorithm for finding a minimum 
spanning tree is applied to T. 

The Boruvka algorithm, as applied to a tree T = (V, E) is as follows (see 17]): 
Initially there are n blue trees consisting of  the nodes of  V and no edges. 

Repeat until there is one blue tree, i.e., T: For each blue tree, select a minimum weight 
edge incident to it. Color all selected edges blue. 

Each repetition of these instructions is referred to as a phase. We construct tree B with 
nodeset W and edgeset F, by adding nodes and edges to B after each phase of  the 
algorithm, so that there is a I-1 correspondence between the nodes of  B and the blue 
trees created during all the phases of  the algorithm. 

For each node v ~ V of  T, we create a leaf f ( v )  of B. Let A be the set of  blue trees 
which are joined into one blue tree t in a phase i. Then we add a new node f ( t )  to W 
and add {{f(a),  f ( t )} l for  all a ~ A} to F. Each edge {f(a) ,  f ( t )}  is labeled with the 
weight of  the edge selected by a in phase i. 

Note that B is a full branching tree, i.e., it is rooted and all leaves are on the same 
level and each internal node has at least two children. 

Since T is a tree, B can be constructed in O(n) time. This may be seen as follows: 
The cost of  executing each phase is proportional to the number of uncolored edges in 
the tree during that phase. The number of  uncolored edges is one less than the number 
of blue trees, since T is a tree. Finally, the number of  blue trees drops by a factor of  at 
least two after each phase. 

For any tree T, let T(x,  y) denote the set of edges in the path in T from node x to 
node y. 
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We prove the following theorem: 

THEOREM 1. Let T be any spanning tree and let B be the tree constructed as described 
above. For any pair of nodes x and y in T, the weight of the heaviest edge in T(x, y) 
equals the weight of the heaviest edge in B ( f  (x), f (y)). 

PROOF. We denote the weight of an edge e by w(e). First we show that for every edge 
e ~ B ( f ( x ) ,  f (y)) ,  there is an edge e' c T(x,  y) such that w(e') >_ w(e). 

Let e = {a, b} and let a be the endpoint of e which is farther from the root. Then 
a = f ( t )  for some blue tree t which contains either x or y, but not both, and w(e) is the 
weight of the edge selected by t. 

Let e' be the edge in T(x, y) with exactly one endpoint in t. Since t had the option of 
selecting e', w(e') > w(e), which concludes the first part of the proof. 

It remains to show the following: 

CLAIM 0.1. Let e be a heaviest edge in T(x, y). Then there is an edge of the same 
weight in B ( f  (x), f (y)). 

We assume for simplicity that there is a unique heaviest edge. The proof can be easily 
extended to the general case. 

l fe  is selected by a blue tree which contains x or y, then an edge in B( f ( x ) ,  f ( y ) )  is 
labeled with w(e). Assume that, on the contrary, e is selected by a blue tree which does 
not contain x or y. This blue tree contained one endpoint of e and thus one intermediate 
node on the path from x to y. Therefore it is incident to at least two edges on the path. 
Then e is the heavier of the two, and is not selected, giving a contradiction. [] 

3. Koml6s's Algorithm for a Full Branching Tree. For a full branching tree of 
weighted edges with n nodes, and m query paths between pairs of leaves, Koml6s has 
shown a simple algorithm to compute the heaviest edge on the path between each pair 
with O(n log((m + n)/n))  comparisons. He breaks up each path into two half-paths 
extending from the leaf up to the lowest common ancestor of the pair and finds the 
heaviest edge in each half-path, as follows: 

Let A(v) be the set of the paths which contain v restricted to the interval [root, v]. 
Starting with the root, descend level by level and at each node v encountered, the 

heaviest edge in each path in the set A(v) is determined, as follows. 
Let p be the parent of v. Assume we know the heaviest edge in each path in the set 

A(p).  Note that the ordering of the weights of these heaviest edges can be determined 
by the length of their respective paths, since for any two paths s and t in A~p), path s 
includes path t or vice versa. Let A (rip) be the set of the restrictions of each of the paths 
in A(v) to the interval [p, root]. Since A(vlp) ~_ A(p),  the ordering of the weights of 
the heaviest edges in A(vlp) is known. To determine the heaviest edge in each path in 
A(v), we need only compare w({v, p}) to each of these weights. This can be done by 
using binary search. Koml6s shows that ~ r  lglA(v)l = O(n log((m + n)/n)) ,  which 
gives the upper bound on the number of comparisons needed to find the heaviest edge 
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in each half-path. Then the heaviest edge in each query path is determined with one 
additional comparison per path. 

4. Implementation of Komi6s ' s  A lgor i thm.  The implementation of Koml6s 's  algo- 
rithm requires the use of a few simple functions on words of size O (log n), such as a shift 
by a specified number of  bits, the bit-wise OR of  two words, [log nJ, the multiplication 
of  two words, and a few more functions which are less conventional and will be described 
below. All these functions can be precomputed in O(n) time and stored in a table where 
they can be accessed in unit time. First, we present a description of  the data structures we 
use, followed by a high-level description of  the algorithm, and then its implementation 
details. 

4.1. Data Structures. Let wordsize be the size of a word, which we assume to be [ lgn l  
bits. 

Node Labels and Edge Tags. Following a modification of  the scheme of  Schieber and 
Vishkin [5], we label the nodes with a [lg n] bit label and the edges with an O (log log n). 
bit tag so that: 

Label Property. Given the tag of  any edge e and the label of any node on the path from 
e to any leaf, e can be located in constant time. 

The labels are constructed as follows: Label the leaves 0, 1 , 2 , . . . ,  as encountered in 
a depth-first traversal of the tree. Label each internal node by the label of the leaf in its 
subtree which has the longest all 0"s suffix. 

For each edge e, let v be its endpoint which is farther from the root and let distance(v) 
be v's distance from the root and i(v) be the index of  the rightmost 1 in v's label. Then 
the tag of e is a string of tagsize ---- O(lg lg n) bits given by (distance(v), i(v)). 

We sketch the argument (see [51) that the Label Property holds. It is not hard to see 
that the label of an ancestor of a node w is given by a prefix of  the label of  w possibly 
followed by a 1 and then all O's. Also, nodes with the same label are connected by a path 
up the tree. Hence the label of w and the position of  the rightmost I in an ancestor 's label 
determine the ancestor 's label, while its distance from the root uniquely determines the 
ancestor 's  identity, among those nodes with the same label. Once the lower endpoint v 
of an edge e is found, then e is the unique edge from v to its parent. 

LCA. For each node v, LCA(v) is a vector of  length wordsize whose ith bit is 1 iff there 
is a path in A(v) whose upper endpoint is at distance i from the root. That is, there is 
a query path with exactly one endpoint contained in the subtree rooted at v, such that 
the lowest common ancestor of  its two endpoints is at distance i from the root. LCA is 
stored in a single word. 

BigLists and smallLists. For any node v, the ith longest path in A(v) will be denoted 
by Ai(v). The weight of  an edge e is denoted w(e). Recall that the set of  paths in A(v) 
restricted to [a, root] is denoted A(vla). Call a node v big if IA(v)I > wordsize/tagsize; 
otherwise v is small. 

For each big node v, we keep an ordered list whose ith element is the tag of  the 
heaviest edge in Ai(v). for i = 1 . . . . .  IA(v)l. This list is a referred to as bigList(v). 
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We may similarly define bigList(vla) for the set of  paths A(vla). BigList(v) is stored in 
[[A(v) l/(wordsize/tagsize)] = O(log log n) words. 

For each small v, let a be the nearest big ancestor of v. For each such v, we keep an 
ordered list, smallList(v), whose ith element is either the tag of  the heaviest edge e in 
Ai (v), or if e is in the interval [a, root], then the j such that Ai (v la) = Aj (a). That is, j 
is a pointer to the entry of bigList(a) which contains the tag for e. Once a tag appears in 
a smallList, all the later entries in the list are tags. For each small v, we keep a pointer 
to the first tag in its smallList. SmalIList is stored in a single word. 

4.2. The Algorithm. The goal is to generate bigList(v) or smallList(v) in time propor- 
tional to log[ A(v)l, so that time spent implementing Koml6s 's  algorithm at each node 
does not exceed the worst case number of  comparisons needed at each node. We show 
that if v is big, then the implementation time is O (log log n), and if  v is small, it is O (1). 

Initially, A(root) = ~. We proceed down the tree, from the parent p to each of  the 
children v. Depending on I A(v)l ,  we generate either bigList(vlp) or smallList(vlp). We 
then compare w({v, p}) to the weights of  these edges, by performing binary search 
on the list, and insert the tag of  {v, p} in the appropriate places to form bigList(v) or 
smallList(v). We continue until the leaves are reached. 

Let v be any node, p is its parent, and a its nearest big ancestor. To compute A(vfp): 
There are two cases if v is small: 

�9 If  p is small, we create smalIList(vlp) from smallList(p) in O(1) time. 
�9 If p is big, we create smallList(vlp) from LCA(v) and LCA(p) in O(1) time. 

If  v is big: 

�9 If  v has a big ancestor, we create bigList(vla) from bigList(a), LCA(v), and LCA(a) 
in O ( l g l g n )  time. 
- -  If p -~ a,  then we create bigList(vlp) from bigList(vla) and smallList(p) in time 

0 (ig lg n). 
�9 If  v does not have a big ancestor, then bigList(vip) *-- smallList(p). 

To insert a tag in its appropriate places in the list: 

�9 Let e = {v, p}, and let i be the rank of  w(e) compared with the heaviest edges of  
A(vlp). Then we insert the tag for e in positions i through IA(v)l, into our list data 
structure for v, in t ime O(1) if v is small, or O(log Iogn)  if v is big. 

4.3. Implementation Details. The computation of  the LCAs is straightforward. First, 
we compute all lowest common ancestors for each pair of  endpoints of  the m query paths 
using an algorithm that runs in time O (n + m), see [5] or [7]. We form the vector LCA(I) 
for each leaf l using this information, and then form the vector LCA(v) for a node at 
distance i from the root by ORing together the LCAs of its children and setting the j th  
bits to 0 for all j > i. 

To implement the remaining operations, we need to preprocess a few functions so that 
we may do table lookup of  these functions. We define a subword to be tagsize bits and 
swnum = Iwordsize/tagsizeJ, i.e., swnum is the maximum number of  subwords stored 
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in a word. Each input and each output described below are stored in single words. The 
symbol ,  denotes "concatenated with." 

selectr takes as input I -  J ,  where I and J are two strings r bits. It outputs a list of  bits of  
J which have been "selected" by I ,  i.e., let (kl, k2 . . . .  ) be the ordered list of  indices 
of  those bits of  I whose value is 1. Then the list is (jk., Jk2 . . . .  ) where jk, is the value 
of  the k~th bit of  J .  

selectS~ takes as input I - J ,  where I is a string of  no more than r bits, no more than 
swnum of which are 1, and J is a list of no more than swnum subwords. It outputs a 
list of  the subwords of  J which have been "selected" by I ,  i.e., let (kj, k2 . . . .  ) be the 
ordered list of  indices of  those bits of  I whose value is 1. Then the list is (jk,, Jk2 . . . .  ) 
where jk, is the kith subword of  J .  

weightr takes as input a string of length r and outputs the number of  bits set to 1. 
indexr takes an r bit vector with no more than h l ' s  and outputs a list of  subwords 

containing the indices of the 1 's in the vector. 
subwordl is a constant such that for i = 1 . . . . .  swnum, the (i �9 tagsize)th bit is 1 and 

the remaining bits are 0 (i.e., each subword is set to 1). 

For each of these functions, it is not hard to see that the preprocessing takes O(n) 
time, when the size of  the input is no greater than lg n + c for c a constant. A table for all 
inputs of  length r can be built by first building a table for inputs of size r/2, looking up 
the result for the two halves, and, in constant time, putting the results together to form 
the entry. 

For example, for indexr, if a table is built for indexr/2, then the table for input strings 
of size r can be easily constructed, in a constant number of  operations per entry, as 
follows: Let I be the first half of  the input and let J be its second half. Add weightr/2 (I) 
to each subword of  indexr/2(J) by adding weightr/2(l) * subwordl to it. Let L be the 
string formed. Then concatenate the first weightr/2(1) subwords of  indexr/2(I) with the 
first weight~/2 (J) subwords of  L. 

Recall that the wordsize is [lg n].  We cannot afford to build a table for selectwo~dsize 
and selectSwordsize which takes inputs of  2wordsize bits, since the table would be too large. 
However, as explained above, we can compute these functions as needed in constant time 
using table lookups of  those functions on input size wordsize/2 as described above. 

We can now perform the operations needed for the data structures. (We omit the 
subscripts of  the functions below, since they can be easily inferred from the size of  
their inputs.) We illustrate these operations with examples where wordsize = 8; tagsize 
= 3 .  

1. Determine IA(v)l: 
�9 IA(v)l = weight(LCA(v)). 
Example: ifLCA(v) = (01101110), then IA(v)l = 5. 

2. Create smallList(vlp) from smallList(p): 
�9 L ~-- select((LCA(p), LCA(v)). 
�9 smallList(vlp) +-- selectS(L, smallList(p)). 
Example: Let LCA(v) = (01001000), LCA(p) = (11000000). Let smallList(p) 
be (tl, t2). Then L = select(1100(O, 01001000) = (01); and smallList(v[p) = 
selectS((Ol), (tl, t2)) = (t2). 
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3. Create smallList(vlp) from LCA(v) and LCA(p) 
�9 smalIList(vlp) +-- index(select(LCA(p), LCA(v)). 
Example: Let  LCA(p) = (01101110) and LCA(v) = (01001000). Then 
smallList(vlp) = index(select((O1101110), (01001000))) = index(lOlO0) = (1, 3). 
(If bigList(p) = (tt, t2, t3, t4, ts), then the first and second entries of  smalIList(vlp) 
are pointers to tl and t3, respectively.) 

4. Insert tag t into positions i to j of smallList(vlp) to form smallList(v): 
�9 Concatenate the first i - 1 subwords ofsmallList(vlp) with the i through j subwords 

of  t �9 subwordl. 
Example: Let smallList(vlp) = (1, 3) as in the example above. Then t is the tag of  
{v, p}. To put t into positions 1 to j = IA(v)l = 2, we compute t �9 subwordl = t * 
00100100 = (t, t) followed some extra 0 bits, which are discarded to get 
smallList(vlp) = (t, t). 

5. Create bigList(vla) from bigList(a), LCA(v), and LCA(a): 
�9 Let L = select(LCA(a), LCA(v)). 
�9 Partition L into strings L i of swnum consecutive bits, and store each Li in a word. 

(The last string may have fewer bits.) 
�9 Partition bigList(a) into words, each containing swnum subwords. (The last may 

have fewer subwords.) Let bi (a) represent the ith word of  bigList(a). 
�9 For each String Li, do selectS(Li, bi(a)). 
�9 Concatenate the outputs to form bigList(vla). 
Example: Let  LCA(a) = (01101110), LCA(v) = (00100101), and let bigList(a) 
be (tl, t2, t3, t4, ts). Then L = (01010); L~ = (01), L2 = (01), and L3 = (0); 
bl ----- (tl, t2), b2 = (t3, t4), b3 = (ts). Then (t2) ---- selectS( (O1), (tl, t2)); (t4) = 
selectS((O1)(t3, t4)); and 0 = selectS(ts). Thus bigList(vla) = (t2, t4). 

6. Create bigList(vlp) from bigList(vJa) and smalIList(p) where p is the parent of v and 
p ~ a :  
�9 Let f be the first subword of  smallList(p) which contains a tag, rather than a 

pointer. Replace all subwords in positions f or higher with smallList(p). 
(Note that A(vJp) = A(p) since this case only arises when JA(v)J > 7A(p) 1, so 
smalIList(vlp) = smallList(p).) 
Example: Using a and v from the previous example, we have bigList(vla) = (tz, t4). 
Suppose smallList(p) = (2, t '). (Here, 2 is pointer to the second item in bigList(a) 
and t '  is the tag of  some edge below a in the tree.) Then bigList(vtp) = (t2, t'). 

7. Insert the tag of {v, p} into the appropriate positions of bigList(vlp) to form 
bigList(v): 
�9 Similar to item (2) above but must  be done for each word in the list. 

4.4. Analysis. When v is small, the cost of the overhead for performing the inser- 
tions by binary search is a constant. When v is big, bA(v)l/(wordsize/tagsize) = 
92 (log n / log  log n), the cost of the overhead is O (lg lg n). Hence the implementation 
cost is O(lglA(v)l), which is proportional to the number of  comparisons needed by 
the Koml6s algorithm to find the heaviest edges in 2m half-paths of  the tree in the 
worst case. Summed over all nodes, this comes to O(n log((m + n)/n)) as Komlrs  has 
shown. 

The only additional costs are in forming the LCAs which take O(m + n) and in 



270 V. King 

processing the tables which takes O(n) ,  and comparing the heaviest edges in each half- 
path, which takes O ( m ) .  

Finally, to complete the minimum spanning tree verification algorithm, the weight of  
each nontree edge is compared with the weight of  the heaviest tree edge in the tree path 
connecting its endpoints, for an additional O (m) cost. 

5. Conclusion and Open Problems .  We have reduced Koml6s 's  algorithm to the 
simpler case of  the full branching tree. We have also devised a novel data structure 
which gives the first algorithm with linear-time overhead for its implementation. 

It is still an open question whether a linear-time algorithm can be found for a pointer 
machine. Such a result would imply a linear-time algorithm for a pointer machine that 
can compute the lowest common ancestor. None is known for that problem which seems 
easier. 

Given a static tree, Schieber and Vishkin's lowest common ancestor algorithm can 
process on-line query paths in constant time for each. An open problem is to solve 
the tree-path problem in constant time per query path, where the query paths are given 
on-line. 

The functions we use are in some sense natural. It is possible that they may be useful 
for implementing other algorithms which are not known to have linear implementations 
or whose implementations involve more specialized table lookup functions, as Dixon et 

al. 's implementation did. (See I l l  for references to some of  these algorithms.) 
Finally, any other applications of  Theorem 1 would be of interest. 
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