
Algorithmica (1997) 18:263-270 Algorithmica
~) 1997 Springer-Vcrlag New York Inc.

A Simpler Minimum Spanning Tree
Verification Algorithm

V. King I

Abstract. The problem considered here is that of determining whether a given spanning tree is a minimal
spanning tree. In 1984 Koml6s presented an algorithm which required only a linear number of comparisons, but
nonlinear overhead to determine which comparisons to make. We simplify his algorithm and give a linear-time
procedure for its implementation in the unit cost RAM model. The procedure uses table lookup of a few simple
functions, which we precompute in time linear in the size of the tree.

Key Words. Minimum spanning tree, Verification.

1. Introduction. The problem of determining whether a given spanning tree in a
graph is a minimal spanning tree has been studied by Tarjan [61, Koml6s [4], and most
recently by Dixon et al. [1]. Tarjan's 1979 algorithm uses path compression and gives
an almost linear running time. Koml6s's algorithm was the first to use a linear number
of comparisons, but no linear-time method of deciding which comparisons to make has
been known. Indeed, a linear implementation of this algorithm was not thought possible,
see [4] and [1]. The only known linear-time algorithm for this problem [1] combines the
techniques of both [6] and [4], using the Koml6s algorithm to process small subproblems
via preprocessing and table lookup.

These verification methods and the method presented here use the fact that a spanning
tree is a minimum spanning tree iff the weight of each nontree edge {u, v} is at least the
weight of the heaviest edge in the path in the tree between u and v. These methods find
the heaviest edge in each such path for each nontree edge {u, v} in the graph, and then
compare the weight of {u, v} to it.

The "tree-path" problem of finding the heaviest edges in the paths between specified
pairs of nodes ("query paths") arises in the recent randomized minimum spanning tree
algorithm of Karger et al. [3]. That algorithm is the first to compute the minimum
spanning tree in linear expected time, where the only operations allowed on edge weights
are binary comparisons. The solution to the tree-path problem is the most complicated
part of these randomized algorithms, which are otherwise fairly simple.

The Koml6s algorithm is simplified by use of the following observation: If T is a
�9 spanning tree, then there is a simple O(n) algorithm to construct a full branching tree B
with no more than 2n edges and the following property:

Let T(x, y) denote the set of edges in the path in T from node x to node y, and let
B(x, y) denotes the set of edges in the path in B from leaf x to leaf y.

I Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada V8W 3P6.
val@csr.uvic.ca. This work was funded by an NSERC grant.

Received July 13, 1995; revised January 29, 1996. Communicated by Ming Y. Kao.

264 V. King

The weight of the heaviest edge in T (x, y) is the weight of the heaviest edge in B (x, y).
Therefore it suffices to use the version of the Koml6s algorithm for full branching

trees only, which is much simpler than his algorithm for general trees.
The second part of this paper is to show that this portion of Koml6s's algorithm has

a linear-time implementation using table lookup of a few simple functions. These tables
can be constructed in time linear in the size of the tree. As in Dixon et al.'s algorithm, the
model of computation is a unit cost RAM with word size (-)(log n). The only operations
used on edge weights are binary comparisons.

In contrast. Dixon et al.'s algorithm separates the tree into a large subtree and many
"microtrees" of size O(lg lgn) . Path compression is used on the large subtree. The
comparison decision tree needed to implement Koml6s's strategy for each possible con-
figuration of microtree and possible set of query paths in the microtree is precomputed
and stored in a table. Each microtree, together with its query paths in the input spanning
tree, is encoded and then the table is used to look up the appropriate comparisons to
make.

In the next section the construction of B is described, and the property of B is proved.
In Section 3 we restate Koml6s's algorithm for determining the maximum weighted edge
in each of m paths of a full branching tree and describe its implementation.

2. Boruvka 'II'ee Property. Let T be a spanning tree with n nodes. Tree B is the tree
of the components that are formed when the Boruvka algorithm for finding a minimum
spanning tree is applied to T.

The Boruvka algorithm, as applied to a tree T = (V, E) is as follows (see 17]):
Initially there are n blue trees consisting of the nodes of V and no edges.

Repeat until there is one blue tree, i.e., T: For each blue tree, select a minimum weight
edge incident to it. Color all selected edges blue.

Each repetition of these instructions is referred to as a phase. We construct tree B with
nodeset W and edgeset F, by adding nodes and edges to B after each phase of the
algorithm, so that there is a I-1 correspondence between the nodes of B and the blue
trees created during all the phases of the algorithm.

For each node v ~ V of T, we create a leaf f (v) of B. Let A be the set of blue trees
which are joined into one blue tree t in a phase i. Then we add a new node f (t) to W
and add {{f(a), f (t)} l for all a ~ A} to F. Each edge {f(a) , f (t)} is labeled with the
weight of the edge selected by a in phase i.

Note that B is a full branching tree, i.e., it is rooted and all leaves are on the same
level and each internal node has at least two children.

Since T is a tree, B can be constructed in O(n) time. This may be seen as follows:
The cost of executing each phase is proportional to the number of uncolored edges in
the tree during that phase. The number of uncolored edges is one less than the number
of blue trees, since T is a tree. Finally, the number of blue trees drops by a factor of at
least two after each phase.

For any tree T, let T(x, y) denote the set of edges in the path in T from node x to
node y.

A Simpler Minimum Spanning Tree Verification Algorithm 265

We prove the following theorem:

THEOREM 1. Let T be any spanning tree and let B be the tree constructed as described
above. For any pair of nodes x and y in T, the weight of the heaviest edge in T(x, y)
equals the weight of the heaviest edge in B (f (x), f (y)).

PROOF. We denote the weight of an edge e by w(e). First we show that for every edge
e ~ B (f (x) , f (y)) , there is an edge e' c T(x, y) such that w(e') >_ w(e).

Let e = {a, b} and let a be the endpoint of e which is farther from the root. Then
a = f (t) for some blue tree t which contains either x or y, but not both, and w(e) is the
weight of the edge selected by t.

Let e' be the edge in T(x, y) with exactly one endpoint in t. Since t had the option of
selecting e', w(e') > w(e), which concludes the first part of the proof.

It remains to show the following:

CLAIM 0.1. Let e be a heaviest edge in T(x, y). Then there is an edge of the same
weight in B (f (x), f (y)).

We assume for simplicity that there is a unique heaviest edge. The proof can be easily
extended to the general case.

l fe is selected by a blue tree which contains x or y, then an edge in B(f (x) , f (y)) is
labeled with w(e). Assume that, on the contrary, e is selected by a blue tree which does
not contain x or y. This blue tree contained one endpoint of e and thus one intermediate
node on the path from x to y. Therefore it is incident to at least two edges on the path.
Then e is the heavier of the two, and is not selected, giving a contradiction. []

3. Koml6s's Algorithm for a Full Branching Tree. For a full branching tree of
weighted edges with n nodes, and m query paths between pairs of leaves, Koml6s has
shown a simple algorithm to compute the heaviest edge on the path between each pair
with O(n log((m + n)/n)) comparisons. He breaks up each path into two half-paths
extending from the leaf up to the lowest common ancestor of the pair and finds the
heaviest edge in each half-path, as follows:

Let A(v) be the set of the paths which contain v restricted to the interval [root, v].
Starting with the root, descend level by level and at each node v encountered, the

heaviest edge in each path in the set A(v) is determined, as follows.
Let p be the parent of v. Assume we know the heaviest edge in each path in the set

A(p). Note that the ordering of the weights of these heaviest edges can be determined
by the length of their respective paths, since for any two paths s and t in A~p), path s
includes path t or vice versa. Let A (rip) be the set of the restrictions of each of the paths
in A(v) to the interval [p, root]. Since A(vlp) ~_ A(p), the ordering of the weights of
the heaviest edges in A(vlp) is known. To determine the heaviest edge in each path in
A(v), we need only compare w({v, p}) to each of these weights. This can be done by
using binary search. Koml6s shows that ~ r lglA(v)l = O(n log((m + n)/n)) , which
gives the upper bound on the number of comparisons needed to find the heaviest edge

266 V. King

in each half-path. Then the heaviest edge in each query path is determined with one
additional comparison per path.

4. Implementation of Komi6s ' s A lgor i thm. The implementation of Koml6s 's algo-
rithm requires the use of a few simple functions on words of size O (log n), such as a shift
by a specified number of bits, the bit-wise OR of two words, [log nJ, the multiplication
of two words, and a few more functions which are less conventional and will be described
below. All these functions can be precomputed in O(n) time and stored in a table where
they can be accessed in unit time. First, we present a description of the data structures we
use, followed by a high-level description of the algorithm, and then its implementation
details.

4.1. Data Structures. Let wordsize be the size of a word, which we assume to be [lgn l
bits.

Node Labels and Edge Tags. Following a modification of the scheme of Schieber and
Vishkin [5], we label the nodes with a [lg n] bit label and the edges with an O (log log n).
bit tag so that:

Label Property. Given the tag of any edge e and the label of any node on the path from
e to any leaf, e can be located in constant time.

The labels are constructed as follows: Label the leaves 0, 1 , 2 , . . . , as encountered in
a depth-first traversal of the tree. Label each internal node by the label of the leaf in its
subtree which has the longest all 0"s suffix.

For each edge e, let v be its endpoint which is farther from the root and let distance(v)
be v's distance from the root and i(v) be the index of the rightmost 1 in v's label. Then
the tag of e is a string of tagsize ---- O(lg lg n) bits given by (distance(v), i(v)).

We sketch the argument (see [51) that the Label Property holds. It is not hard to see
that the label of an ancestor of a node w is given by a prefix of the label of w possibly
followed by a 1 and then all O's. Also, nodes with the same label are connected by a path
up the tree. Hence the label of w and the position of the rightmost I in an ancestor 's label
determine the ancestor 's label, while its distance from the root uniquely determines the
ancestor 's identity, among those nodes with the same label. Once the lower endpoint v
of an edge e is found, then e is the unique edge from v to its parent.

LCA. For each node v, LCA(v) is a vector of length wordsize whose ith bit is 1 iff there
is a path in A(v) whose upper endpoint is at distance i from the root. That is, there is
a query path with exactly one endpoint contained in the subtree rooted at v, such that
the lowest common ancestor of its two endpoints is at distance i from the root. LCA is
stored in a single word.

BigLists and smallLists. For any node v, the ith longest path in A(v) will be denoted
by Ai(v). The weight of an edge e is denoted w(e). Recall that the set of paths in A(v)
restricted to [a, root] is denoted A(vla). Call a node v big if IA(v)I > wordsize/tagsize;
otherwise v is small.

For each big node v, we keep an ordered list whose ith element is the tag of the
heaviest edge in Ai(v). for i = 1 IA(v)l. This list is a referred to as bigList(v).

A Simpler Minimum Spanning Tree Verification Algorithm 267

We may similarly define bigList(vla) for the set of paths A(vla). BigList(v) is stored in
[[A(v) l/(wordsize/tagsize)] = O(log log n) words.

For each small v, let a be the nearest big ancestor of v. For each such v, we keep an
ordered list, smallList(v), whose ith element is either the tag of the heaviest edge e in
Ai (v), or if e is in the interval [a, root], then the j such that Ai (v la) = Aj (a). That is, j
is a pointer to the entry of bigList(a) which contains the tag for e. Once a tag appears in
a smallList, all the later entries in the list are tags. For each small v, we keep a pointer
to the first tag in its smallList. SmalIList is stored in a single word.

4.2. The Algorithm. The goal is to generate bigList(v) or smallList(v) in time propor-
tional to log[A(v)l, so that time spent implementing Koml6s 's algorithm at each node
does not exceed the worst case number of comparisons needed at each node. We show
that if v is big, then the implementation time is O (log log n), and if v is small, it is O (1).

Initially, A(root) = ~. We proceed down the tree, from the parent p to each of the
children v. Depending on I A(v)l , we generate either bigList(vlp) or smallList(vlp). We
then compare w({v, p}) to the weights of these edges, by performing binary search
on the list, and insert the tag of {v, p} in the appropriate places to form bigList(v) or
smallList(v). We continue until the leaves are reached.

Let v be any node, p is its parent, and a its nearest big ancestor. To compute A(vfp):
There are two cases if v is small:

�9 If p is small, we create smalIList(vlp) from smallList(p) in O(1) time.
�9 If p is big, we create smallList(vlp) from LCA(v) and LCA(p) in O(1) time.

If v is big:

�9 If v has a big ancestor, we create bigList(vla) from bigList(a), LCA(v), and LCA(a)
in O (l g l g n) time.
- - If p -~ a, then we create bigList(vlp) from bigList(vla) and smallList(p) in time

0 (ig lg n).
�9 If v does not have a big ancestor, then bigList(vip) *-- smallList(p).

To insert a tag in its appropriate places in the list:

�9 Let e = {v, p}, and let i be the rank of w(e) compared with the heaviest edges of
A(vlp). Then we insert the tag for e in positions i through IA(v)l, into our list data
structure for v, in t ime O(1) if v is small, or O(log Iogn) if v is big.

4.3. Implementation Details. The computation of the LCAs is straightforward. First,
we compute all lowest common ancestors for each pair of endpoints of the m query paths
using an algorithm that runs in time O (n + m), see [5] or [7]. We form the vector LCA(I)
for each leaf l using this information, and then form the vector LCA(v) for a node at
distance i from the root by ORing together the LCAs of its children and setting the j th
bits to 0 for all j > i.

To implement the remaining operations, we need to preprocess a few functions so that
we may do table lookup of these functions. We define a subword to be tagsize bits and
swnum = Iwordsize/tagsizeJ, i.e., swnum is the maximum number of subwords stored

268 V. King

in a word. Each input and each output described below are stored in single words. The
symbol , denotes "concatenated with."

selectr takes as input I - J , where I and J are two strings r bits. It outputs a list of bits of
J which have been "selected" by I , i.e., let (kl, k2) be the ordered list of indices
of those bits of I whose value is 1. Then the list is (jk., Jk2) where jk, is the value
of the k~th bit of J .

selectS~ takes as input I - J , where I is a string of no more than r bits, no more than
swnum of which are 1, and J is a list of no more than swnum subwords. It outputs a
list of the subwords of J which have been "selected" by I , i.e., let (kj, k2) be the
ordered list of indices of those bits of I whose value is 1. Then the list is (jk,, Jk2)
where jk, is the kith subword of J .

weightr takes as input a string of length r and outputs the number of bits set to 1.
indexr takes an r bit vector with no more than h l ' s and outputs a list of subwords

containing the indices of the 1 's in the vector.
subwordl is a constant such that for i = 1 swnum, the (i �9 tagsize)th bit is 1 and

the remaining bits are 0 (i.e., each subword is set to 1).

For each of these functions, it is not hard to see that the preprocessing takes O(n)
time, when the size of the input is no greater than lg n + c for c a constant. A table for all
inputs of length r can be built by first building a table for inputs of size r/2, looking up
the result for the two halves, and, in constant time, putting the results together to form
the entry.

For example, for indexr, if a table is built for indexr/2, then the table for input strings
of size r can be easily constructed, in a constant number of operations per entry, as
follows: Let I be the first half of the input and let J be its second half. Add weightr/2 (I)
to each subword of indexr/2(J) by adding weightr/2(l) * subwordl to it. Let L be the
string formed. Then concatenate the first weightr/2(1) subwords of indexr/2(I) with the
first weight~/2 (J) subwords of L.

Recall that the wordsize is [lg n]. We cannot afford to build a table for selectwo~dsize
and selectSwordsize which takes inputs of 2wordsize bits, since the table would be too large.
However, as explained above, we can compute these functions as needed in constant time
using table lookups of those functions on input size wordsize/2 as described above.

We can now perform the operations needed for the data structures. (We omit the
subscripts of the functions below, since they can be easily inferred from the size of
their inputs.) We illustrate these operations with examples where wordsize = 8; tagsize
= 3 .

1. Determine IA(v)l:
�9 IA(v)l = weight(LCA(v)).
Example: ifLCA(v) = (01101110), then IA(v)l = 5.

2. Create smallList(vlp) from smallList(p):
�9 L ~-- select((LCA(p), LCA(v)).
�9 smallList(vlp) +-- selectS(L, smallList(p)).
Example: Let LCA(v) = (01001000), LCA(p) = (11000000). Let smallList(p)
be (tl, t2). Then L = select(1100(O, 01001000) = (01); and smallList(v[p) =
selectS((Ol), (tl, t2)) = (t2).

A Simpler Minimum Spanning Tree Verification Algorithm 269

3. Create smallList(vlp) from LCA(v) and LCA(p)
�9 smalIList(vlp) +-- index(select(LCA(p), LCA(v)).
Example: Let LCA(p) = (01101110) and LCA(v) = (01001000). Then
smallList(vlp) = index(select((O1101110), (01001000))) = index(lOlO0) = (1, 3).
(If bigList(p) = (tt, t2, t3, t4, ts), then the first and second entries of smalIList(vlp)
are pointers to tl and t3, respectively.)

4. Insert tag t into positions i to j of smallList(vlp) to form smallList(v):
�9 Concatenate the first i - 1 subwords ofsmallList(vlp) with the i through j subwords

of t �9 subwordl.
Example: Let smallList(vlp) = (1, 3) as in the example above. Then t is the tag of
{v, p}. To put t into positions 1 to j = IA(v)l = 2, we compute t �9 subwordl = t *
00100100 = (t, t) followed some extra 0 bits, which are discarded to get
smallList(vlp) = (t, t).

5. Create bigList(vla) from bigList(a), LCA(v), and LCA(a):
�9 Let L = select(LCA(a), LCA(v)).
�9 Partition L into strings L i of swnum consecutive bits, and store each Li in a word.

(The last string may have fewer bits.)
�9 Partition bigList(a) into words, each containing swnum subwords. (The last may

have fewer subwords.) Let bi (a) represent the ith word of bigList(a).
�9 For each String Li, do selectS(Li, bi(a)).
�9 Concatenate the outputs to form bigList(vla).
Example: Let LCA(a) = (01101110), LCA(v) = (00100101), and let bigList(a)
be (tl, t2, t3, t4, ts). Then L = (01010); L~ = (01), L2 = (01), and L3 = (0);
bl ----- (tl, t2), b2 = (t3, t4), b3 = (ts). Then (t2) ---- selectS((O1), (tl, t2)); (t4) =
selectS((O1)(t3, t4)); and 0 = selectS(ts). Thus bigList(vla) = (t2, t4).

6. Create bigList(vlp) from bigList(vJa) and smalIList(p) where p is the parent of v and
p ~ a :
�9 Let f be the first subword of smallList(p) which contains a tag, rather than a

pointer. Replace all subwords in positions f or higher with smallList(p).
(Note that A(vJp) = A(p) since this case only arises when JA(v)J > 7A(p) 1, so
smalIList(vlp) = smallList(p).)
Example: Using a and v from the previous example, we have bigList(vla) = (tz, t4).
Suppose smallList(p) = (2, t '). (Here, 2 is pointer to the second item in bigList(a)
and t ' is the tag of some edge below a in the tree.) Then bigList(vtp) = (t2, t').

7. Insert the tag of {v, p} into the appropriate positions of bigList(vlp) to form
bigList(v):
�9 Similar to item (2) above but must be done for each word in the list.

4.4. Analysis. When v is small, the cost of the overhead for performing the inser-
tions by binary search is a constant. When v is big, bA(v)l/(wordsize/tagsize) =
92 (log n / log log n), the cost of the overhead is O (lg lg n). Hence the implementation
cost is O(lglA(v)l), which is proportional to the number of comparisons needed by
the Koml6s algorithm to find the heaviest edges in 2m half-paths of the tree in the
worst case. Summed over all nodes, this comes to O(n log((m + n)/n)) as Komlrs has
shown.

The only additional costs are in forming the LCAs which take O(m + n) and in

270 V. King

processing the tables which takes O(n) , and comparing the heaviest edges in each half-
path, which takes O (m) .

Finally, to complete the minimum spanning tree verification algorithm, the weight of
each nontree edge is compared with the weight of the heaviest tree edge in the tree path
connecting its endpoints, for an additional O (m) cost.

5. Conclusion and Open Problems . We have reduced Koml6s 's algorithm to the
simpler case of the full branching tree. We have also devised a novel data structure
which gives the first algorithm with linear-time overhead for its implementation.

It is still an open question whether a linear-time algorithm can be found for a pointer
machine. Such a result would imply a linear-time algorithm for a pointer machine that
can compute the lowest common ancestor. None is known for that problem which seems
easier.

Given a static tree, Schieber and Vishkin's lowest common ancestor algorithm can
process on-line query paths in constant time for each. An open problem is to solve
the tree-path problem in constant time per query path, where the query paths are given
on-line.

The functions we use are in some sense natural. It is possible that they may be useful
for implementing other algorithms which are not known to have linear implementations
or whose implementations involve more specialized table lookup functions, as Dixon et

al. 's implementation did. (See I l l for references to some of these algorithms.)
Finally, any other applications of Theorem 1 would be of interest.

Acknowledgment. I would like to thank Phil Klein for his careful reading of the
manuscript.

References

[1] B. Dixon, M. Rauch, and R. Tarjan, Verification and sensitivity analysis of minimum spanning trees in
linear time, SIAMJ. Comput., 21(6) (1992), 1184-1192.

[21 D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors, SlAM J. Comput., 13
(1984), 338-355.

13] D. Karger, P. N. Klein, and R. E. Tarjan, A randomized linear-time algorithm to find minimum spanning
trees, J. Assoc. Comput. Mach., 42 (1995), 321-328.

[4] J. Komlrs, Linear verification for spanning trees, Combinatorica, 5 (1985), 57--65.
[5] B. Schieber and U. Vishkin, On finding lowest common ancestors: simplification and parallelization,

SIAMJ. Comput., 17 (1988), 1253-1262.
[6] R. Tarjan, Applications of path compressions on balanced trees, J. Assoc. Comput. Mach., 26 (1979),

690-715.
[7] R. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conference Series in Applied

Mathematics, Vol. 44, SIAM, Philadelphia, PA, 1983, p. 73.

