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SCALING ALGORITHMS FOR THE SHORTEST PATHS PROBLEM*
ANDREW V. GOLDBERG

Abstract. We describe a new method for designing scaling algorithms for the single-source shortest paths
problem and use this method to obtain an O (Vcfftn log N) algorithm for the problem. (Here n and m are the number
of nodes and arcs in the input network and N is essentially the absolute value of the most negative arc length; arc
lengths are assumed to be integral.) This improves previous bounds for the problem. The method extends to related
problems.
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1. Introduction. In this paper we study the shortest paths problem where arc lengths can
be both positive and negative. This is a fundamental combinatorial optimization problem that
often comes up in applications and as a subproblem in algorithms for many network problems.
We assume that the length function is integral, as is the case in most applications.

We describe a framework for designing scaling algorithms for the shortest paths prob-
lem and derive several algorithms within this framework. Our fastest algorithm runs in
O(/-m log N) time, Where n and rn are the number of nodes and arcs of the input network,
respectively, and the arc costs are at least -N. Our approach is related to the cost-scaling
approach to the minimum-cost flow problem [2], [14], [18], [21 ].

Previously known algorithms for the problem are as follows. The classical Bellman-Ford
algorithm [1], [8] runs in O(nm) time. Our bound is better than this bound for N o(2").
Scaling algorithms ofGabow [12] and Gabow and Tarjan [13] are dominated by an assignment
subroutine. The former algorithm runs in O(n3/am log N) time; the latter algorithm runs in
O(/-m log(nN)) time. Our bound dominates these bounds. The fastest shortest paths
algorithm currently known for planar graphs [9], [19] runs in O(n 1"5) time. Our algorithm
runs in O (n 1.5 log N) time on planar graphs and is competitive for small values of N.

Our framework is very flexible. In 8 and 9 we describe two variations of the
O(v/-m log N) algorithm. The first variation seems more practical and the second varia-
tion shows the relationship between our method and Dijkstra’s shortest path algorithm [6].
The flexibility of our method may lead to better running time bounds.

The shortest paths problem is closely related to other problems, such as the minimum-cost
flow, assignment, and minimum-mean length cycle problems. Our method for the shortest
paths problem extends to these problems. In 10 we sketch extensions to the minimum-cost
flow and assignment problems. McCormick [20] shows an extension to the minimum-mean
cycle problem. The resulting algorithms achieve bounds that are competitive with those of
the fastest known algorithms, but are somewhat simpler.

2. Preliminaries. The input to the single-source shortest paths problem is (G, s,/),
where G (V, E) is a directed graph, E R is a length function, and s V is the
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source node (see, e.g., [4], [23]). The goal is to find shortest paths distances from s to all other
nodes of G or to find a negative length cycle in G. If G has a negative length cycle, we say
that the problem is infeasible. We assume that the length function is integral. We also assume.
without loss of generality, that all nodes are reachable from s in G and that G has no multiple
arcs. The latter assumption allows us to refer to an arc by its endpoints without ambiguity.

We denote VI by n and EI by m. Let M be the smallest arc length. Define N -M if
M < -1 and N 2 otherwise. Note that N > 2 and l(a) > -N for all a E.

A pricefunction is a real-valued function on nodes. Given a price function p, we define
a reduced costfunction lp E R by

lp(V, W) --/(1), W) "q- p(v) p(w).

We say that a price function p is feasible if

(1) lp(a) >_ 0 Ya E.

For an e > 0, we say that a price function is e-feasible if

(2) Ip(a) > -e Ya E.

Given a price function p, we say that an arc a is admissible if lp (a) <_ 0, and denote the
set of admissible arcs by Ep. The admissible graph is defined by Up (V, Ep).

If the length function is nonnegative, the shortest paths problem can be solved in
O (m + n log n) time 10], or in O (m + n log n/log log n) time 11 in a random access
machine computation model that allows certain word operations. We call such a problem
Dijkstra’s shortest paths problem [6]. Given a feasible price function p, the shortest paths
problem can be solved as follows. Let d be a solution to the Dijkstra’s shortest paths problem
(G, s, lp). Then the distance function d’ defined by d’(v) d(v) + p(v) p(s) is the solution
to the input problem.

We restrict our attention to the problem of computing a feasible price function or finding
a negative length cycle in G.

3. Successive approximation and bit scaling frameworks. Our method computes a

sequence of e-feasible price functions with e decreasing by a factor of two at each iteration.
Initially, all the prices are zero and e is the smallest power of two that is greater than N. The
method maintains integral prices. At each iteration, the method halves e and applies the REFINE
subroutine, which takes as input a (2e)-feasible price function and returns an e-feasible price
function or discovers a negative length cycle. In the latter case, the computation halts.

LEMMA 3.1. Suppose a pricefunction p is integral and 1-feasible. Thenfor every a E.
lp(a) >_ O.

Proof The lemma follows from the fact that lp(a) is integral and lp(a) > -1.
Bit scaling, first applied to the shortest paths problem by Gabow 12], can be used instead

of successive approximation in all algorithms described in this paper. The bit scaling version
of our method rounds lengths up to a certain precision, initially the smallest power of two
that is greater than N. The lengths and prices are expressed in the units determined by the
precision. Note that since the lengths are rounded up, a negative cycle with respect to the
rounded lengths is also negative with respect to the input lengths.

Each iteration of the algorithm starts with a price function that is feasible with respect
to the current (rounded) lengths. Note that this is true initially because of the choice of the
initial unit. At the beginning of an iteration, the lengths and prices are multiplied by two.

and one is subtracted from the arc lengths as appropriate to obtain the higher precision. The
resulting price function is 1-feasible with respect to the current length function; the feasibility
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is restored using REFINE. The method terminates when the precision unit becomes 1, which
happens in O(log N) iterations. Note that the basic problem solved at each iteration of the
bit scaling method is a special version of the shortest paths problem where the arc lengths are
integers greater or equal to -1.

The following lemma is obvious.
LEMMA 3.2. Both the successive approximation and the bit scaling methods terminate in

O (’log N) iterations.
Note that if the current unit in the bit scaling method is U and the current price function

is feasible with respect to the rounded length function, then the price function is U-feasible
with respect to the input length function. Thus bit scaling can be viewed as a special case
of successive approximation. The work on the minimum-cost flow problem 18] shows that
successive approximation is more general than bit scaling; in particular, the former can be
easily used to obtain strongly polynomial algorithms.

We describe bit scaling version in the algorithms. This allows us to avoid certain technical
details and slightly simplifies the presentation. However, all algorithms can be restated in the
successive approximation framework in a straightforward way.

When describing bit scaling implementations of REFINE, we denote the current rounded
length function by I. We also use the following definitions. We call an arc (v, w) improvable
if lp (v, W) 1, and we call a node w improvable if there is an improvable arc entering w.

4. Dealing with admissible cycles. Suppose that Gp has a cycle F. Since the reduced
cost of a cycle is equal to the length of the cycle, I(F) _< 0.

If I(F) < 0, or/(F) 0 and there is an arc (v, w) such that Ip(v, w) < 0 and both v
and w are on 1-’, then the input problem is infeasible and the method terminates. Otherwise,
we contract F and remove self-loops adjacent to the contracted node. A feasible price func-
tion on the contracted graph extends to a feasible price function on the original graph in a
straightforward way.

Our algorithm uses an O(m)-time subroutine DECYCLE(Gp) that works as follows. Find
strongly connected components of Gp (see, e.g., [22]); if a component contains a negative
reduced cost arc, G has a negative length cycle; otherwise contract each component. (Note
that the prices of nodes in each contracted component change by the same amount, so the
reduced costs of arcs with both ends in the same component do not change.)

Suppose Gp is acyclic. Then Gp defines a partial order on V and on the subset of
improvable nodes. This motivates the following definitions. A set of nodes S is closed if
every node reachable in Gp from a node in S belongs to S. A set of nodes (arcs) S is a chain
if there is a path in Gp containing every element of S.

5. Cut-relabel operation. In this section we study the CUT-RELABEL operation which
is used by our method to transform a 1-feasible price function into a feasible one. The CUT-

RELABEL operation takes a closed set S and decreases prices of all nodes in S by 1.3 Note
that the operation preserves integrality of the prices (and therefore integrality of the reduced
costs).

LEMMA 5.1. The CUT-RELABEL operation does not create any improvable arcs.

Proof. The only arcs whose reduced cost is decreased by CUT-RELABEL are the arcs leaving
S. Let a be such an arc. The relabeling decreases lp (a) by 1. Before the relabeling, S is closed
and therefore lp(a) > 0. By integrality, lp(a) >_ 1. After the relabeling, lp(a) > O.

The above lemma implies that CUT-RELABEL does not create improvable nodes. The next
emma shows how to use this operation to reduce the number of improvable nodes.

Alternatively, the operation can decrease prices of all nodes of S by the maximum amount e’ such that Lemma 5.1
holds.
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LEMMA 5.2. Let p be a 1-feasible price function. Let S be a closed set of nodes, and
let X c_ S be a set of improvable nodes such that every improvable arc entering a node ofX
crosses the cut defined by S. After the set S is relabeled, nodes in X are no longer improvable.

Proof Let p’ be the price function after the relabeling. Let w X and let (v, w) be an
improvable arc with respect to p. By the statement of the lemma, v ’ S. Thus the relabeling
increases Ip by 1, and, by 1-feasibility of p, lp,

A simple algorithm based on CUT-RELABEL applies the following procedure to every
improvable node v.

1. DECYCLE(Gp).
2. S +-- set of nodes reachable from {v} in Gp.
3. CUT-RELABEL(S).

It is easy to see that given a 1-feasible price function, this algorithm computes a feasible one
in O (rim) time.

6. Faster algorithm. In this section we introduce an O (x/Cm log N) algorithm for find-
ing a feasible price function. Let k denote the number of improvable nodes. At each iteration,
the algorithm either finds a closed set S such that applying CUT-RELABEL to S reduces the
number of improvable nodes by at least x/, or a chain S such that applying ELIMINATE-CHAIN
to S reduces the number of improvable nodes by at least x/. (The ELIMINATE-CHAIN op-
eration is described in the next section.) An iteration takes linear time and is based on the
results of 5 and 7 and the following lemma, which is related to Dilworth’s theorem (see,
e.g., [7]).

LEMMA 6.1. Suppose Gp is acyclic. Then there exists a chain S c_ E such that S contains

at least improvable arcs or a closed set S cc_ V such that relabeling S reduces the number

ofimprovable nodes by at least x/. Furthermore, such an S can befound in 0 (m) time.

Proof. Construct a graph G’ by adding a source node r to Gp and arcs from r to all nodes
in V. Note that G is acyclic. Define l(a) lp(a) for all a Ep and l’(a) 0 for the
newly added arcs a. The absolute value of the path length with respect to l’ is equal to the
number of improvable arcs on the path. Let d’ V -- R give the shortest paths distances
from r with respect to l’ in G’. Since G’ is acyclic, d’ can be computed in linear time. Define
D maxv Id’[.

If D >_ /, then a shortest path from r to a node v with d’(v) -D contains a chain
with at least .v/ improvable arcs.

If D < /-, then the partitioning of the set of improvable nodes according to the value
of d’ on these nodes contains at most nonempty subsets. Let X be a subset containing
the maximum number of improvable nodes and let be the value of d’ on X. Observe that X
contains at least x/ improvable nodes. Define S {v 6 V Id’(v) _< i}.

Clearly X c_ S. Also, S is closed. This is because if v 6 S and there is a path from v to
w in Gp, then the length of this path with respect to l’ is nonpositive, so d’(w) <_ d’(v) <_
and therefore w 6 S.

We show that after CUT-RELABEL is applied to S, nodes in X are no longer improvable.
Let x 6 X and let (v, x) be an improvable arc. Then l’(v, x) -1 and therefore d’(v) >
d’(x) i. Thus v S and (v, w) is not improvable after relabeling of S.

The efficient implementation ofREFINE is described in Fig. 1. The implementation reduces
the number of improvable nodes k by at least at each iteration by eliminating cycles in Gp,
finding S as in Lemma 6.1, and eliminating at least improvable nodes in S using techniques
of 4, 5, and 7. In 7 below we describe a linear time implementation of ELIMINATE-CHAIN.
This implies that an iteration REFINE runs in linear time.

LEMMA 6.2. The implementation of REFINE described in this section runs in O(/-fim
time.
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procedure REFINE(p);
k the number of improvable nodes;
repeat

DECYCLE(Gt,);
S *-- a chain’or a set as in Lemma 6.1;
if S is a chain then
ELIMINATE-CHAIN(S);

else
CUT-RELABEL(S);

k -- the number of improvable nodes;
until k 0:
return(p);

end.

FIG. 1. An efficient implementation of REFINE.

Proof. We need to bound the number of iterations of REFINE. Each iteration reduces k by
at least x/, and O (x/) iterations reduce k by at least a factor of two. The total number of
iterations is bounded by

i=0

Lemmas 3.2 and 6.2 imply the following result.
THEOREM 6.3. The shortest paths algorithm with REFINE implemented as described in

this section runs in O(,m log N) time.

7. Eliminate-chain subroutine. Suppose that Gp is acyclic and let F be a path in Gp. Let
(vl, wl) (vt, wt be the collection of all improvable arcs on F suchthat for < < j _<
the path visits vj before vi (i.e., v is visited last). By definition, nodes w w are
improvable. In this section we describe a subroutine ELIMINATE-CHAIN that modifies p so that
the nodes w w are no longer improvable and no new improvable nodes are created, or
finds a negative length cycle in G. The subroutine runs in O (m) time.

At iteration i, ELIMINATE-CHAIN finds the set S of all nodes reachable from w in the
admissible graph and applies CUT-RELABEL tO Si. If w is improvable after the relabeling, the
algorithm concludes that the problem is infeasible.

LEMMA 7.1. The path F is always admissible. If wi is improvable after iteration i, then
the problem is infeasible.

Proof. The price function is modified only by CUT-RELAEL. At iteration i, Si contains
w, all its successors on F, and no other nodes of F (by induction on i). Therefore lp (vi, wi)
changes exactly once during iteration i, when it increases by 1. The arc (vi, wi) is improvable
before the change, and admissible after the change. Reduced costs of other arcs on F do not

change during the execution of ELIMINATE-CHAIN.
Suppose w,. is improvable immediately after iteration i. Then there must be a node v such

that (v, wi) is improvable and v Si. By construction of S, there must be an admissible path
from w to v. This path together with the arc (v, w) forms a negative length cycle.

Lemmas 5.1 and 7.1 imply that the implementation of ELIMINATE-CHAIN is correct. Next
we show how to refine this implementation to achieve O(m) running time. The key fact that
allows such an implementation is that the sets Si are nested.

First, we contract the set of nodes Si at every iteration. The reason for contracting is
to allow us to change the prices of nodes in Si efficiently (these prices change by the same
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amount). The CONTRACT(Si) operation collapses all nodes of Si into one node si and assigns
the price of the new node to be zero. (The price of si is actually an increment to the prices
of the nodes in Si.) Reduced costs of the arcs adjacent to the new node remain the same as
immediately before CONTRACT. Note that we have at most one contracted node at any point
during ELIMINATE-CHAIN, but contracted nodes can be nested.

The UNCONTRACT(si) operation, applied to a contracted node si, restores the graph as it
was just before the corresponding CONTRACT operation and adds p(si) to prices of all nodes
in Si. At the end of the chain elimination process, we apply UNCONTRACT until the original
graph is restored.

Contraction is used for efficiency only and does not change the price function computed
by ELIMINATE-CHAIN, because by Lemma 7.1 Si (- Sj for < < j < t.

Second, we implement the search for the nodes reachable from wi’s in the admissible graph
in a way similar to Dial’s implementation [5] of Dijkstra’s algorithm. Our implementation
uses a priority queue that holds items with integer key values in the range [0 2n]; the
amortized cost of the priority queue operations is constant. We assume the following queue
operations.

enqueue(v, Q)" add a node v to a priority queue Q.
min(Q)" return the minimum key value of elements on Q.
extract-min(Q)" remove a node with the minimum key value from Q.
decrease-key(v, x)" decrease the value of key(v) to x.
shift(Q, 3)" add 3 to the key values of all elements of Q.

All of these operations except shift are standard; a constant time implementation of shift is
trivial.

Note that if p is 1-feasible and lp(a) > 2n, then a can be deleted from the graph. This is
because in the current iteration, the reduced cost of an arc can decrease by at most n" at the
next iteration, by at most n/2 (measured in the current units), and so on. Thus the reduced
cost of a will remain nonnegative from now on. We assume that such arcs are deleted as soon
as their reduced costs become large enough.

We define the key assignment function h that maps reduced costs into integers as follows.

if x<0
otherwise.

During the chain elimination computation, each node is unlabeled, labeled, or scanned.
Unlabeled nodes have infinite keys" other nodes have finite keys. The priority queue Q contains
labeled nodes. Initially all nodes are unlabeled. At the beginning of iteration i, key(wi) is set
to zero and w; is added to Q. While Q is not empty and the minimum key value of the queue
nodes is zero, a node with the minimum key value is extracted from the queue and scanned
as in Dijkstra’s algorithm except that h(lp(a)) is used instead of Ip(a) (see Fig. 2). When
this process stops, the scanned nodes are contracted, the new node is marked as scanned, and
its key is set to zero. Then the price of the new node is decreased by and shift(Q, -1) is
executed. This concludes iteration i.

Next we prove correctness of the implementation.
LEMMA 7.2. The sets Si are computed correctlyfor every
Proof For convenience we define So 0. Consider an iteration i. It is enough to show

that Si is correct if _< _< and Si-1 is correct.
Let v be a node on Q with the zero key value. We claim that v is reachable from wi in the

current admissible graph. To see this, consider two cases. If v was a node on Q with zero key

4In 9 we show that Dial’s implementation can be used directly. The implementation described in this section,
however, gives a better insight into the method.
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procedure SCAN(v);
for all (v, w) do

if key(w) cx then
mark w as labeled;
key(w) lp(v, w);
insert(w, Q);

else if w is labeled and key(w) < h(Ip(v, w)) then
decrease-key(w, Ip(v, w));

mark v as scanned:
end.

FIG. 2. The scan operation.

value at the beginning of the iteration, then v is reachable from W by Lemma 7.1. Otherwise,
key of v became zero when an arc (u, v) was scanned. We can make an inductive assumption
that u is reachable from wi. By definition of h, h(u, v) 0 implies that l,(u, v) < O, and
therefore v is reachable from wi.

Let F be an admissible path originating at wi. It is easy to see by induction on the number
of arcs on F that all nodes on F are scanned and added to Si.

It follows that at the end of iteration i, Si contains all nodes reachable from wg in the
admissible graph. V1

LEMMA 7.3. ELIMINATE-CHAIN runs in O(m) time.

Proof. Each node is scanned at most once because a scanned node is marked as such and
never added to Q. A contracted node is never scanned. The time to scan a (noncontracted)
node is proportional to degree of the node, so the total scan time is O(m).

The time of a CONTRACT operation is O (1 + n’), where n’ is the number of nodes being
contracted. The number of CONTRACT operations is at most n and the sum of n’ values over
all CONTRACT operations is at most 2n. Thus the total cost of contract operations is O (n).

The cost of an UNCONTRACT operation is O(1 -4- nr), where n is the same as in the
corresponding CONTRACT operation. Thus the total time for these operations is O (2n). C]

8. Alternative chain elimination. In this section we describe an algorithm based on an
alternative implementation of REFINE. We call this implementation REFINE-P. The algorithm
runs in O(/rm log N) time.

REFINE-P works in iterations, which we call passes. At the beginning of every pass we
check for negative cycles and eliminate zero length admissible cycles using DECYCLE. Then
we compute distances d" defined in the proof of Lemma 6.1. Given a nonnegative integer M.
we define the keyfunction

(v) min(-d’(v), M) Yv V.

(We discuss the choice of initial value of M later.) Sometimes we refer to 3(v) as the key of v.
Let VM denote the set of nodes with key value M. At each iteration of a pass, CUT-RELABEL is
applied to VM. Then keys of nodes in VM and all nodes reachable from VM in the admissible
graph are changed to M and M is decreased by one. This process is repeated until M
reaches zero; at this point the pass terminates. A pass can be implemented to run in linear
time; the implementation is similar to that of ELIMINATE-CHAIN. We leave the details to the
reader.

The next lemma implies that CUT-RELABEL in used correctly in a pass.
LEMMA 8.1. Immediately before a CUT-RELABEL operation is applied by a pass, VM is

closed with respect to the current admissible graph.
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Proof. Before the first CUT-RELABEL operation, Va4 is closed by of the definition of 3.
The admissible graph is changed only by the CUT-RELABEL operations, and after every such
operation a search is done to enforce the closeness of Vm. [3

Note that the function d’ is well defined if the admissible graph does not have negative
cycles.

LEMMA 8.2. Ifat the beginning ofan iteration ofa pass the admissible graph is acyclic,
then

(v) min(-d’(v), M) Yv V.

Proof The proof is by induction on the number of iterations. Keys are initialized so that
the statement of the lemma holds before the first iteration. Suppose that the statement is true

immediately before iteration i, and show that it holds immediately after the iteration.
The d’ value of nodes in Vu increases by one, and the keys of these nodes are decreased

by one at the end of the iteration. The d’ values of a node outside Vu changes only if this
node becomes reachable from Vu in the admissible graph, in which case the new d’ value of
this node is -(M 1) or less. The keys of the nodes that become reachable are correctly set

toM- 1.
Recall that D maxv Id’l.
LEMMA 8.3. Suppose that the value ofM at the beginning ofa pass is equal to such that

0 < <_ D, and the admissible graph does not contain negative cycles throughout the pass.
Then the pass decreases the number ofimprovable nodes by at least t.

Proof Given v, w V, we say that v >- w if there is a negative reduced cost path from
v to w in the admissible graph. If the admissible graph does not contain negative cycles, then
">-" defines a partial order on V.

Consider the beginning ofan iteration of a pass, Let v be a maximum element (with respect
to ">-") of the set of nodes with key value M. By the previous lemma, v is an improvable
node. By the choice of v, if (u, v) is an improvable arc then u 9 VM. Therefore v is no longer
improvable at the end of the iteration.

Each iteration of the pass reduces the number of improvable nodes, and the number of
iterations is t.

Next we discuss the choice of initial value of M. Define d; to be the number of improvable
nodes with d’ value of -i (in the beginning of a pass). If the initial value ofM is i, 0 < < D,
and there are no negative cycles, the number of improvable nodes is reduced by at least d by
the first application of CUT-RELABEL. Combining this observation with the above lemma, we

conclude that the pass reduces the number of improvable nodes by max(i, d). A more careful
analysis shows that the improvement is at least / di 1, since all improvable nodes with an
initial d’ value of and at least one improvable node for each value of j, 0 < j < i, are no

longer improvable after a pass. Define ki + di 1, and set M to the index that maximizes

ki. By an argument of Lemma 6.1, ku f2 (x/-ff). This implies the following theorem.
THEOREM 8.4. With the above choice ofthe initial value ofM, the alternative implemen-

tation ofREFINE runs in 0 (/-m time.
We would like to note that in practice, a pass is likely to reduce the number of improvable

nodes by more then ki, and it may be more advantageous to chose higer initial values for M.
The algorithm performance is likely to be better than the above worst-case bound suggests.

9, Chain elimination using Dijkstra’s algorithm. In this section we show yet another

implementation of ELIMINATE-CHAIN. This implementation uses Dial’s implementation of
Dijkstra’s algorithm [5], and does not use the CUT-RELABEL operation explicitly.

Let F be a path in Gp. An auxiliary network A is defined as follows.
Let d’ be the distance function on 1-’ with respect to lp from the beginning of 1-" to all
nodes on 1".
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Define l’(a) max(0, Ip(a)).
Define d’(v) 0 for v not on F.
Add a source node t, connect to all v 6 V and define l’(t, v) n + d’(v).

ELIMINATE-CHAIN works as follows.
1. Construct the auxiliary network A.
2. Compute shortest paths distances d in A with respect to l’.
3. Yv V, p’(v) p(v) + d(v) n.
4. Replace p by p’.
LEMMA 9.1. The above version ofELIMINATE-CHAIN can be implemented to run in linear

time.

Proof The fact that all steps of ELIMINATE-CHAIN except for the shortest paths compu-
tation take linear time is obvious. The shortest paths computation takes linear time if Dial’s
implementation [5] of Dijkstra’s algorithm is used. This is because l’ is nonnegative and the
source is connected to the other nodes by arcs of length at most n. [-I

LEMMA 9.2.
1. p’ is integral.
2. VaEE, lp, >_--1.
3. ELIMINATE-CHAIN does not create improvable arcs.

Proof The first claim follows from the fact that l’ is integral. The last two claims follow
from the observation that/} is nonnegative and, for a E, l’d(a)--Ip,(a) ifa is improvable
and 0 otherwise. [3

LEMMA 9.3. If the problem is feasible, then Yv on F if(v) p(v) + d’(v).
Proof Clearly p’(v) < p(v) / d’(v).. Assume for contradiction that for some node v on

F, p’(v) < p(v) +d’(v). For the shortest path P in A fromt to v, we have/’(P) < n +d’(v)
and therefore Ip(e) < n + d’(v). Let (t, w) be the first arc of P, and let Q be P with (t, w)
deleted. We have

lp(Q) Ip(P) n d’(w) < d’(v) d’(w).

Note that since l’ is nonnegative, w must be a successor of v on F. Let R be the part of
F between v and w. By the definition of dt,

Ip(R) d’(w) d’(v).

Thus lp(Q) + lp(R) < 0. This is a contradiction because the paths Q and R form a
cycle. [3

LEMMA 9.4. If the problem isfeasible and v is an improvable node on I" with respect to

p, then v is not improvable with respect to p’.
Proof Assume for contradiction l(u, v) E Ip,(U, V) < 0. Let P be the shortest path

in A from to u, let (t. w) be the first arc on P, and let Q be P with (t, w) deleted. Note that
d(u) <_ d(v), because otherwise lp,(U, v) cannot be negative. Therefore to must be a successor
of v on 1". Let R be the portion of 1-’ between v and w.

Since Q is a shortest path, we have la(Q) 0. This implies lp,(Q) <_ O. By the previous
lemma lp,(R) 0. Therefore the cycle formed by R, Q, and (u, v) has a negative reduced
cost with respect to p’. This is a contradiction. [3

Remark. Implications ofLemma 9.4 are stronger than those ofLemma 7.1: if the problem
is feasible, the former lemma guarantees that all improvable nodes on F are "fixed," and the
latter guarantees only that the nodes that are heads of the improvable arcs on 1" are "fixed."

10. Extensions to the minimum-cost circulation and assignment problems. Our short-
est path method extends to the minimum-cost circulation problem. The intuitive difference is
that when a shortest path algorithm finds a negative cycle, it terminates; when the correspond-
ing minimum-cost circulation algorithm finds a negative cycle, it increases the flow around the
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cycle so that an arc on the cycle becomes saturated, and continues. In our discussion below,
we assume that the reader is familiar with [17], [18]. We denote the reduced costs by Cp and
the residual graph by Gf.

We define admissible arcs to be residual arcs with negative reduced costs, as in [17],
[18]. Without loss of generality, we assume that a feasible initial circulation is available. A
simple algorithm based on the CUT-RELABEL operation does the following at each iteration.
First, it cancels admissible cycles; this can be done in O(m log n) time (see, e.g., [17]).
Next, the algorithm picks an improvable node v, finds the set S of nodes reachable from
v in the admissible graph, and executes CUT-RELABEL(S). The resulting algorithm runs in
O(nm log n log(nC)) time (note that the initial flow may have residual arcs with reduced cost
of -C with respect to the zero price function). We can also use the TIGHTEN operation to
obtain a minimum-cost flow algorithm with the same running time. These algorithms are
variations of the tighten-and-cancel algorithms of 17].

In the above minimum-cost flow algorithms, the admissible graph changes due to flow
augmentations in addition to price changes. Because of this fact, our analysis of the improved
algorithms for the shortest paths problem does not seem to extend to the minimum-cost flow
problem. In the special case of the assignment problem, the analysis of the improved shortest
path algorithm can be extended to obtain an O(/-m log(nC)) time algorithm. This bound
matches the fastest known scaling bound [13], but the algorithm is different. The idea is to
define the admissible graph and improvable arcs so that an improvable node has exactly one
improvable arc going into it and the residual capacity ofthis arc is one. This is possible because
of the special structure of the assignment problem. When an admissible cycle is canceled, all
improvable arcs on this cycle are saturated and there are no improvable nodes on the cycle
after the cancellation.

11. Concluding remarks. We described a framework for designing scaling algorithms.
The CUT-RELABEL operation can be used to design algorithms within this framework. The
framework is very flexible and can be used to design numerous algorithms for the problem.
Using these results, we improved the time bound for the problem. We believe that further
investigation of this framework is a promising research direction.

One can apply the version of ELIMINATE-CHAIN described in .9 without using scaling. It
can be shown that in this case if the problem is feasible, all negative reduced costs of arcs
on F are changed to nonnegative ones, and reduced costs of other arcs do not become more
negative. This suggests a possibility of solving the general shortest paths problem in O
Dijkstra shortest paths computations. The problem, however, is that our way of dealing with
the first case of Lemma 6.1 does not work without scaling.

Our definition of e-feasibility corresponds to that of e-optimality for minimum cost flows
[14], [18]. If one follows [14], [18] faithfully, however, one would define e-feasibility using
l,(a) >_ - instead of (2) and not consider arcs with zero reduced costs admissible. Under
these definitions, the admissible graph cannot have zero length cycles, so there is no need for
DECYCLE. However, these definitions seem to lead to an O (log(nN)) bound on the number of
iterations of the scaling loop of the method. The tighten operation described in 17] also leads
to an implementation of the method that runs in O (log(n N)) iterations of the scaling loop.

The techniques introduced in this paper have a practical impact. In particular, the tech-
niques of 8 proved to be crucial in our implementation of price update computation in a
minimum-cost flow algorithm [15], which resulted in a significant improvement of perfor-
mance.

Preliminary experiments with the algorithm of this paper, conducted as a part of the
experimental study described in [3], suggest that the algorithm is not the best one to use in
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practice. Although on some problem families the algorithm significantly outperformed the
classical methods, it was dominated by the algorithm of [16] on all problem classes studied.

The algorithms we discussed scale e by a factor of two. Any factor greater than one can
be used instead without affecting the asymptotic time bounds. The method can be modified to
maintain a tentative shortest path tree. When the algorithm terminates, this tree is the shortest
path tree. This eliminates the need for the Dijkstra computation at the end of the algorithm.
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