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1. Introduction

We consider the fully dynamic graph problems of connectivity, minimum spanning
forest, 2-edge connectivity and biconnectivity. Here foyy dynami¢ we mean
that the graph may begpdatedby insertion and deletion of edges. If we only allow
insertions or only allow deletions, the graph is opértially dynamic The updates

are interspersed wittjueriesto the current graph. The update and quargrations

are presented on-line, with no knowledge of future operations.

A preliminary version of this work was presented at 8@&th ACM Symposium on the Theory of
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Like priority queues, dynamic graph algorithms may both be of directinterest, and
of interest as data structures within algorithms for static problems. As an example
of direct usage, Frederickson [1985] suggests using a dynamic minimum spanning
tree algorithm to maintain how heavily loaded links we need to use to get from
one vertex to another in a communications networks. As an example of usage as
data structures, Gabow et al. [1999] use dynamic 2-edge connectivity to efficiently
determine if a graph has a unique matching.

We now formally define the problems considered and state our results. We are
considering a fully dynamic grapB over a fixed vertex sé¥, |V| = n. Unless
otherwise statedn is the current number of edges, which we assume is 0 when
we start. Most of the time bounds presented amortized meaning that they
are averaged over all operations performed. This is particularly justified when our
fully dynamic algorithms are used as data structures inside static algorithms where
we only care about the total running time. We are striving for time bounds that
are polylogarithmic im. Here polylogarithmic bounds are considered feasible for
dynamic problems in the same way as polynomial bounds are considered feasible
for static problems.

For thefully dynamic connectivity problerthe updates may be interspersed with
connectivity querigsasking whether two given vertices are connecte@irrhe
connectivity problem reduces to the problem of maintaining a spanning forest (a
spanning tree for each component) in that if we can mairgairspanning forest
F for G at costO(t(n) logn) per update, then, using the dynamic trees of Sleator
and Tarjan [1983], we can answer connectivity queries in g n/logt(n)).

In this article, we present a very simple deterministic algorithm for maintaining a
spanning forest in a graph in amortized tir®¢log? n) per update. Connectivity
gueries are then answered in ti®€logn/log logn).

In thefully dynamic minimum spanning forest probleme have weights on the
edges, and we wish to maintain a minimum spanning foFesff G, that is, a
minimum spanning tretor each component d&. Thus, in connection with any
update toG, we need to respond with the corresponding updateB fairany. We
present a deterministic algorithm for maintaining a minimum spanning férast
O(log* n) amortized time per operation. Applying the dynamic trees technique from
Sleator and Tarjan [1983] to the minimum spanning fofFesh O(log n/log logn)
time, we can for any pair of vertices find the heaviest edge between thé&m in
which is also the heaviest edge needed to get between the vertiGes in

A bridgein a graph is an edge whose removal disconnects some component. A
graph is 2edge connecteifland only if itis connected and contains no bridges. The
2-edge connected components are the maximal 2-edge connected subgraphs, and
two verticess andw are 2-edge connected if and only if they are in the same 2-edge
connected component, or equivalently, if and only #ndw are connected by two
edge-disjoint paths. In thially dynamic2-edge connectivity problenthe edge
updates may be interspersed with queries asking whether two given vertices are
2-edge connected. We present a deterministic algorithm supporting all operations
in O(log* n) amortized time per operation. The algorithm is easily augmented with
searches for bridges.

An articulation pointin agraphis a vertex whose removal disconnects some com-
ponent. A graph ibiconnectedf and only if it is connected and has no articulation
points. The biconnected components are the maximal biconnected subgraphs, and
two verticess andw are biconnected if and only if they are in the same biconnected
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component, or equivalently, if and only if either, (v) is an edge ov andw are
connected by two internally disjoint paths. In flady dynamic biconnectivity prob-

lem the edge updates may be interspersed with queries asking whether two given
vertices are biconnected. We present a deterministic algorithm supporting all opera-
tions inO(log® n) amortized time per operation. The algorithm is easily augmented
with searches for articulation points.

1.1. ReviousWORK. For deterministic algorithms, all the previous best solu-
tions to the fully dynamic connectivity problem were also solutions to the minimum
spanning forest problem. In 1983, Frederickson [1985] introduced a data structure
known astopology treedor the fully dynamic minimum spanning forest problem
with a worst-case cost dD(,/m) per update, permitting connectivity queries in
time O(logn/log(s/m/ logn)) = O(1). In 1992, Eppstein et al. [1997] improved
the update time td(,/n) using thesparsification techniqueFinally, in 1997,
Henzinger and King [1997b] gave an algorithm wiii{./nlogn) amortized up-
date time and constant time per connectivity query.

In 1995, Henzinger and King [1999] used randomization to get the first feasi-
ble solution to the dynamic connectivity problem. They showed that a spanning
forest could be maintained i@ (log® n) expected amortized time per update. Then
connectivity queries are supzported @(logn/loglogn) time. The update time
was further improved t@(log” n) in 1996 by Henzinger and Thorup [1997]. No
randomized technique was known for improving the determini®{¢/nlogn)
amortized update cost for the minimum spanning forest problem.

In 1991, Frederickson [1997] succeeded in generalizin@iigm) bound from
1983 Frederickson [1985] for fully dynamic connectivity to fully dynamic 2-edge
connectivity. As for connectivity, the sparsification technique of Eppstein et al.
[1997] improved this bound t®(./n). Further, Henzinger and King [1997a; 1999]
generalized their randomization technique for connectivity to giv@dog® n) ex-
pected amortized bound. It should be noted that the above-mentioned improvement
for connectivity of Henzinger and Thorup [1997], does not affect@{&g’ n)
bound for 2-edge connectivity.

For biconnectivity, the previous results are a lot worse. The first non-trivial
result was a deterministic bound 6f(m?3) from 1992 by Henzinger [1995]. In
1994, Henzinger [2000] improved this bound @min{,/mlogn, n}). In 1995,
Henzinger and La Powr{1995] further improved the deterministic bound to
O(y/nlognlog[my/n]). Henzinger and King [1995] generalized their randomized
algorithm from [Henzinger and King 1999] to the biconnectivity problem to
achieve anO(A log*n) expected amortized cost per operation, wharés the
maximal degree at the moment the operation is performed (In Henzinger and
King [1995], the bound is incorrectly quoted &{log*n) (Henzinger, personal
communication, 1997)).

Finally, for all of the above problems, there is a lower boun@@bg n/log logn),
proved independently by Fredman and Henzinger[1998] and Miltersen et al. [1994].

For the incremental (no deletions) and decremental (no insertions) problems, the
bounds are as follows: Incremental connectivity is the union-find problem, for which
Tarjan [1975] has provided a®(«(m, n)) bound. Westbrook and Tarjan [1992]
have obtained the same time bound for incremental 2-edge and biconnectivity.
Further, Sleator and Tarjan [1983] have provide@4log n) bound for incremental
minimum spanning forest.
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Decrementally, for connectivity and 2-edge connectivity, Thorup [1999] has pro-
vided anO(logn) bound if we start witt2(n log® n) edges, and a®(1) bound if
we start with2(n?) edges. For decremental minimum spanning forest and bicon-
nectivity, no better bounds were known than those for the fully dynamic case.

1.2. QUrR CONTRIBUTIONS. First, we present a very simple deterministic fully
dynamic connectivity algorithm with an update cost@flog? n), thus matching
the previous best randomized bound and improving substantially over the previous
best deterministic bound @ (/nlogn).

Our technique relies on some of the same intuition that was used by Henzinger
and King [1999] in their randomized algorithm. Our deterministic algorithm is,
however, much simpler, and in contrast to their algorithm, it generalizes to the min-
imum spanning forest problem. More precisely, a specialization of our connectivity
algorithm gives a simple decremental minimum spanning forest algorithm with an
amortized cost 0D (log? n) per operation for any sequence(im) deletions. Then,
we use a technique from Henzinger and King [1997b] to convert our deletions-only
structure to a fully dynamic data structure for the minimum spanning forest problem
usingO(log* n) amortized time per update. This is the first polylogarithmic bound
for the problem, even when we include randomized algorithms.

Finally, our connectivity techniques are generalized to 2-edge and biconnectivity,
leading to anO(log* n) operation cost for 2-edge connectivity and @og® n)
operation cost for biconnectivity. The generalization uses some of the ideas from
Frederickson 1997; Henzinger and King 1995; Henzinger and King 1997a] of
organizing information around a spanning forest. However, finding a generalization
that worked was rather delicate, particularly for biconnectivity, where we needed
to make a careful recycling of information, leading to the first polylogarithmic
algorithm for this problem.

1.3. IMPLICATIONS. Using known reductions, our results imply improved fully
dynamic algorithms for bipartitenedsedge witness, and maximal spanning forest
decomposition [Henzinger and King 1999], for geometric minimum spanning trees
[Eppstein 1995], and for approximate edge connectivity [Thorup and Karger 2000].

Our algorithms may also be used as improved subroutines in algorithms for
the several static problems: randomly sampling spanning forests of a given graph
[Feder and Mihail 1992], finding a color-constrained minimum spanning tree
[Frederickson and Srinivas 1989], and finding a consensus tree [Henzinger et al.
1999]. Very recently, our dynamic 2-edge connectivity has been used in providing
efficientimplementations of old constructive proofs in matching theory [Biedl et al.
2001; Gabow et al. 1999].

1.4. RECeENT DEVELOPMENTS lyer Karger, Rahul, and Thorup [2000] have
implemented and compared our connectivity algorithm with other fully-dynamic
connectivity algorithms, and in these experiments, variants of our algorithm per-
formed very well. Thorup [2000] has found a linear space implementation of the
fully dynamic connectivity algorithm of this paper, which here is implemented in
O(m+ nlogn) space. Also he improved the randomized amortized update time to
O(logn(log logn)?), thus getting very close the above mentioned cell-probe lower
bound ofQ2(log n/log logn) [Fredman and Henzinger 1998; Miltersen et al. 1994].
Finally, using bit parallelism as well as a kind of biased deletions, he has improved
the time bounds for 2-edge and biconnectivity@dog® n log logn).
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1.5. @NTENTS First, we have a preliminary Section 2, reviewing notation
and known tools for dealing with dynamic trees. Readers who are only interested
in the general ideas of our fully dynamic connectivity algorithm can skip this
preliminary section. Afterwards, we present the fully dynamic connectivity algo-
rithm in Section 3, the generalization to decremental minimum spanning forest in
Section 4, the fully dynamic minimum spanning forest algorithm in Section 5, the
fully dynamic 2-edge connectivity algorithm in Section 6, and the fully dynamic
biconnectivity algorithm in Section 7. Our presentations are generally focused on
getting good polylogarithmic amortized bounds for all operations. In some cases,
using more complicated algorithms, one can get better space and query time, but
for ease of presentation, we only sketch these improvements. Finally, in Section 8,
we sum up and present some major open problems.

2. Preliminaries

As mentioned, this section can be skipped by readers only interested in the high
level ideas of our dynamic connectivity algorithm.

In all the dynamic problems considered in this article, we will be maintaining
some spanning forest of the graphvIlandw are connected in our dynamic forest,

v - - -w denotes the unique path fromow. If v =w, v---w is just the vertex.

If v # w, s¥(v) denotes the successonodn the pattv - - - w. If u, v, andw are all
connectedmeefu, v, w) denotes the unique intersection vertex of the three paths
u---v,u---w,andv---w.

We will now review some data structures needed for maintaining our spanning
forests. The first is very simple and suffices for connectivity and decremental min-
imum spanning forest. The second is more complicated, but is needed for our
implementations of fully dynamic minimum spanning forest, 2-edge and biconnec-
tivity. The data structures are themselves rooted trees so to keep thingnagast,
andarcsare in the data structure whierticesandedgesare in the spanning forest.

2.1. ET-TREES We now discuss th&T-treesof Henzinger and King [1999].

We work on a dynamic forest where arbitrary edges can be cut and edges linking
different trees in the forest can be inserted. A query connectad(tells whether

v andw are connected, and a query sizefives the number of vertices in the tree
containingv. The forest can further be updated by adding or removing weighted
keys from the vertices. A query min-key)(returns a minimal key from the tree
containingyv, if any. If the keys are unweighted, min-key(returns an arbitrary

key. In our connectivity and decremental minimum spanning forest algorithm, the
keys will typically be incident non-tree edges.

All the above updates and queries are supporte@(logn) time using the
ET-trees from Henzinger and King [1999], to which the reader is referred for a
more detailed description. An ET-tree is a standard dynamic balanced binary tree
over some Euler tour around a tree in the forest. Here an Euler tour around atreeis a
maximal closed walk over the graph obtained from the tree replacing each edge by
a directed edge in each direction. The walk uses each directed edge ontéss if
n vertices, the cyclic Euler tour has length-2 2. We have such an ET-tree for each
tree in our forest. The important point is that if trees in the forest are linked or cut,
the new Euler tours can be constructed by at most 2 splits and 2 concatenations of
the original Euler tours. Rebalancing the ET-trees affects @flggn) ET-nodes.
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Each vertex in our dynamic forest may occur several times in the Euler tour. Arbi-
trarily, we select one of these occurrences as the representative. Now each ET-node
represents the set of representative leaves below it. Let ETvjodgnote the
ET-tree root ovew. Since the balanced ET-trees have hei@fibgn), we can find
ET-rootf) in time O(logn). Now connected(, w) < ET-rootf{r) = ET-root{w).

At each ET-node], we maintain the number sizp(of representatives below it
and the minimal key min-key( attached to a representative below it. Since links
and cuts only affedD(log n) ET-nodes and since the ET-trees have he@fhbg n),
this information is easily maintained {@(logn) time per update. Now, for a forest
vertexv, sizef{) = size(ET-rooty)) and min-keyy) = min-key(ET-rooty)).

Finally, as in Henzinger and King [1999], we note that if we are willing to settle
for O(log? n/log logn) time for links and cuts, we can reduce the cost of the other
operations t@(logn/log logn). The simple trick is instead of the balanced binary
trees to use balancegl(logn)-ary trees over the Euler tours. Now, the height is
reduced tdd(logn/loglogn), but link and cuts affeaD(logn/log logn) ET-nodes
each withO(logn) children.

2.2. ToP TREES The ET-trees are very simple to implement, but they fail to
maintain information about paths in trees, such as for example, what is the maximal
weight on the path between two given vertices in a tree. Typically, a path will be
completely spread over an Euler tour of a tree. In order to deal efficiently with
paths, we shall use the top trees from Alstrup et al. [1997].

A top tree is defined based on a pair consisting of a Tremnd a seb T of at
most two vertices fronT, calledexternal boundary verticessiven (T, aT), any
connected subtre@of T has a sed(t 57)C of boundary verticethat are the vertices
of C that are either i@ T or incident to an edge i leavingC. The subtre&€ is
called aclusterof (T, aT) if it has at most two boundary vertices. Therns itself a
cluster withdr 37)T =9T. Also, if Ais a subtree o€, d(c s ,r,c) A= 9(1.5T) A, SO
Ais acluster ofC, 9t 57)C) if and only if Ais a cluster oft dT). Sinced 51y IS
a canonical generalization 8ffrom T to all subtrees of’, we used as a shorthand
for 9(1,51) in the rest of the paper. We say two clustérsnd B are neighborsif
they share a single vertex adJ B is a cluster (see Figure 1).

A top treeT over (T, dT) is a binary tree such that:

(1) The nodes of are clusters of [, aT).

(2) The leaves of are the edges oF.

(3) If Cisthe parentoAandB in 7 thenC = AU B andA andB are neighbors.
(4) Theroot of 7 is T itself.

For a clustelC, the vertices inC\aC are calledinternal vertices If a andb are

the (not necessarily distinct) boundary verticeCothe patha - - - b is called the
cluster pathof C and is denoted (C). If a £ b, the cluster is called path cluster

The clustelC is said to be gath ancestoof the clusterD andD is called gpath
descendanof C if they are both path clusters andD) € 7(C). Note that each
edgee € 7(C) is a path descendant 6f A child that is a path descendant ipath
child, so in Figure 1, we have two path children in (1), 1 path child in (2), and O path
children in (3)—(4). Ifaiis a boundary vertex & andC has two childrerA and B,
thenAis considerediearestoaifa ¢ BorifoA={a}.If 0C = A =0B = {a},

the nearest cluster is chosen arbitrarily.
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@) A‘ “@

Fic. 1. The cases of merging two neighboring clusters into one eTdre the boundary vertices of
the merged cluster and theare the boundary vertices of the children clusters that did not become
boundary vertices of the merged cluster. Finally, the dashed line is the cluster path of the merged cluster.

(3)

The top trees over the trees in our forest are maintained under the
following operations:

Link (v, w). Wherev andw are in different trees, links these trees by adding the
edge ¢, w) to our dynamic forest.

Cut(e). Removes the edgefrom our dynamic forest.

Exposdv, w). Returnaiil if v andw are not in the same tree. Otherwise, it makes
v andw external boundary vertices of the top tree containing them and returns
the new root cluster.

Every update of the top trees is implemented as a sequence of the following two
local operations:

Merge(A, B). Where A and B are neighbor clusters and roots of two top trees
7a and 7g. Creates a new clustéZ = AU B with children A and B, thus
combiningZa and7g in a top tree with rooC. Finally, the new root clustet
is returned.

Split(C). WhereC is the root-cluster of a top treég and has childrer and B.
DeletesC, thus turningZ into the two top tree§, and7g.

The implementation of each Link, Cut, and Expose always start with a sequence
of Split. This includes a Split of all ancestor clusters of edges whose boundary
change. Note that an end-poinbf an edge has to be boundary vertex of the edge
if v is not a leaf in the underlying forest, so each of Link, Cut, and Expose can
change the boundary of at most two edges, excluding the edge being linked or cut.
Finally, we finish with a sequence of Merge.

THEOREM1 (ALSTRUP ET AL 1997; REDERICKSON1985). For a dynamic
forest we can maintain top trees of heightl@y n) supporting each LinkCut,
or Expose with a sequence ofl@g n) Split and Merge. Here the sequence itself is
identified in Qlog n) time. The space usage of the top trees is linear in the size of
the dynamic forest.

Note that since the height of any top tree maintained using this theorem is
O(logn), we have that an edge is contained in at n@@8bgn) clusters. A vertex
v of degreed can appear irO(d logn) clusters, but is only internal toO(logn)
clusters, and we assume a poirnK) to the unique smallest cluster it is internal
to. If vis an external boundary vertex, it is not internal to any cluster, and@ien
points to the root cluster containing
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We refer to the algorithm of Theorem 1 which translates Link, Cut, and Expose
operations into sequences of Merge and Split operations asytdriver. When
using top trees, we have direct access to its representation, which is just a stan-
dard binary tree, whose nodes represent the clusters, and with each “top” node is
associated a set of at most two boundary vertices. As users, we will typically asso-
ciate extra information with the top nodes. Now, when the top driver has merged
two clustersA and B into a new clusteC, we will be notified with pointers to
the top nodes representirly B, andC. We can then compute information for
C based on the information we have associated withnd B. If C is later split,
we may propagate information fro@ down to A and B. As an example of the
power of the top machinery, we give a short proof of a result from Sleator and
Tarjan [1983]:

COROLLARY 2. We can maintain a fully dynamic weighted forest F supporting
gueries about the maximum weight between any two vertices(lmg@) time
per operation.

PrRoOOF.  For each path clust€Z we maintain the maximum weight on(C)
in the variable weight. For a path cluster consisting of an edgeveight is just the
weight ofe. Now C := Merge(A, B) sets weighg := max{weighty | D € {A, B}
is a path child ofC}, while Split(C) just deletesC. Both operations take constant
time. To answer the query MaxWeight(- - w), we just seC := Exposey, w) and
return weight. [

As a final observation, we note that it is easy to augment top trees with the
following O(logn) time operation that we shall use in Section 5.2.

Find(v). Returns a unique identifier for the tree containingrhus, Find¢) =
Find(w) if and only if v andw are connected. The identifier is only changed
when the tree containing is changed by Link and Cut. It is not changed
by Expose.

The identifiers are just stored at the root clusters, so Fjrid(implemented by
going toC(v) and then move u®(logn) times till we find a root cluster, from
which we return the associated identifier. In connection with Exposey, we first
find and save the identifier of the root cluster containiradw, then run Expose,
and finally store the saved identifier at the new root cluster. In connection with
Link and Cut, we first free the identifiers at the root clusters involved, so that they
can be reused. After the Link or Cut, new tree identifiers are allocated for the new
root clusters.

3. Connectivity

In this section, we present a simp&{log® n) time deterministic fully dynamic
algorithm for graph connectivity. First we give a high-level description, ignoring
all problems concerning data structures. Second, we implement the algorithm with
concrete data structures and analyze the running times.

3.1. HGH-LEVEL DESCRIPTION Our dynamic algorithm maintains a spanning
forest F of a graphG. The edges inF will be referred to adree edgesUs-
ing Sleator and Tarjan’s dynamic trees, or any of the data structures mentioned
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in Section 2, it is easy to check if vertices are connected in a dynamic forest.
Hence, insertions are easy: when inserting an edgs), we check ifv andw are
connected inF; if not, we add ¢, w) to F. Also, we can easily deal with dele-
tions of nontree edges. Our challenge is to deal with the deletion of a tree edge
(v, w). The deletion splits some tree I, but if the corresponding component
in G is not split, we have to find a replacement edge so as to reconnect the split
treeinF.

To accommodate systematic search for replacement edges, our algorithm
associates with each edge levelf(e) < ¢max = [log,n]. For eachi, F de-
notes the subforest df induced by edges of level at leastThus,F=Fy 2
Fi2--- 2 Fy,,. The following invariants are maintained.

(i) Fis amaximum (with respect ) spanning forest o6, that is, if v, w) is a
nontree edgey andw are connected iffyy,w).

(i) The maximal number of vertices in a tree i is [n/2' |. Thus, the maximal
level is £max.

Initially, all edges have level 0, and hence both invariants are satisfied. We are going
to present an amortization argument based on increasing the levels of edges. The
levels of edges are never decreased, so we can have atfagsicreases per edge.
Intuitively speaking, when the level of a nontree edge is increased, it is because we
have discovered that its end points are close enou§htafitin a smaller tree on a
higher level. Concerning tree edges, note that increasing their level cannot violate
(i), but it may violate (ii).

We are now ready for a high-level description of insert and delete.

Insert(e). The new edge is given level 0. If the end-points were not connected in
F = Fo, eis added td~. Clearly, neither (i) nor (ii) is violated.

Deletde). If eisnotatree edge, itis simply deletedeif atree edge, itis deleted
and areplacement edgeeconnecting- at the highest possible level, is searched
for. SinceF was a maximum spanning forest, we know that the replacement
edge has to be of level at mo&e). We now call Replace( ¢(e)). Note that
when a tree edge is deleted,F may no longer be spanning, in which case (i)
is violated until we have found a replacement edge. In the intermediate time, if
(v,w) is not a replacement edge, we still have thaandw are connected
in FZ(V,W)-

Replacd(v, w),i). Assuming thatthere is noreplacement edge on levielfinds
a replacement edge of the highest lewal, if any.

LetT, andT,, be the trees ifr; containingv andw, respectively. Assume, without
loss of generality, thdfl, | < |T,|. Before deleting{, w), T = T, U{(v, w)}UTy
was atree on levehwith atleast twice as many verticesgsBy (ii), T had at most
In/2' | vertices, so nowl, has at mostn/2' 1| vertices. Hence, preserving our
invariants, we can take all edgesTfof leveli and increase their level tot 1,
so as to makéd, a tree inFj 1.

Now leveli edges incident td, are visited one by one until either a replacement
edge is found, or all edges have been consideredt betan edge visited during
the search.
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If f does not connect, andT,,, we increase its level tb+ 1. This increase
pays for our considering.

If f does connect, andT,, itis inserted as a replacement edge and the search
stops.

If there are no level edges left, we call Replace((w),i — 1); except if
i =0, in which case we conclude that there is no replacement edge, fo.(

3.2. IMPLEMENTATION. To implement the above abstract algorithm, for eiach
we apply the ET-trees from Section 2.1 to the forBstWith each vertex, we
associate a key for each incident levetdge. The keys for tree edges and for
the nontree edges are separated so that we can search tree edges and nontree
edges independently.

Note that each tree edge on levalppears in alF,, h < i, hence inO(logn)
levels. On the other hand, we only hawnkeys, as each edge only appears as a key
on its own level. Hence, our space usag®{sn + nlogn).

Itis now straightforward to analyze the amortized cost of the different operations.
When an edge is inserted on level 0, the direct co€l(izgn). However, its level
may increasé(log n) times. For each increase, we spén@ogn) time, both for
finding the edge, and for making the appropriate changes to the ET-trees. Thus, the
total amortized cost of inserting an edge, including all subsequent level increases,
is O(log? n).

Deleting a nontree edgetakes timeO(logn). When a tree edge is deleted,
we have to cut all forests;, | < £(e), giving an immediate cost a@d(log? n). We
then haveO(logn) recursive calls to Replace, each of c@iogn) plus the cost
amortized over increases of edge levels. Finally, if a replacement edge is found, we
have to linkO(logn) forests, inO(log? n) total time.

Thus, the cost of inserting and deleting edges f@iis O(log? n). The ET-trees
overFy = F immediately allows us to answer connectivity queries between arbitrary
vertices in timeO(logn). In order to reduce this time t®(logn/loglogn), we
simply apply the®(logn)-ary ET-trees menioned in Section 2.1 to our spanning
forestF. This gives us an added cost®flog? n/log logn) time per changes iR,
but this is subsumed by o@(log? n) cost from above. Hence, we conclude:

THEOREM 3. Given a graph G with m edges and n verticéisere exists
a deterministic fully dynamic algorithm that answers connectivity queries in
O(logn/log logn) time worst caseand uses @og°n) amortized time per insert
or delete.

As mentioned, our space bound for connectividym + nlogn). The main
challenge in getting the space further down is that Replace, for each |eexds
to determine which of, andT,, is the smaller. However, Thorup [2000] has recently
found a quite different linear space implementation of our algorithm.

4. Decremental Minimum Spanning Forests

We now expand on the ideas from the previous section to the problem of decremen-
tally maintaining a minimum spanning forest (MSF). In the next section, we apply
what is essentially a construction from Henzinger and King [1997b], transforming
a deletions-only MSF algorithm into a fully dynamic MSF algorithm.
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It turns out that if we only want to support deletions, we can obtain an MSF
algorithm from our connectivity algorithm by some very simple changes. The first
is, of course, that the initial spanning foréstas to be a minimal spanning forest.
The second is that when in replace, we consider the lewehtree edges incident
to Ty, instead of doing it in an arbitrary order, we should do it in order of increasing
weights. That is, we repeatedly take the lightest incident lewglgee: if eis a
replacement edge, we are done; otherwise, we nedeeleveli + 1, and repeat
with the new lightest incident leveledge, if any.

To see that the above simple change suffices to maintairFthg& minimum
spanning forest, we prove that in addition to (i) and (ii), the following invariant
is maintained:

(iii) Every cycleC has a nontree edgewith w(e) = maxi.c w(f) and{(e) =
mingcc £( ).

The original replace function found areplacement edge on the highest possible level,
but now, among the replacement edges on the highest possible level, we choose the
one of minimum weight. Using (iii), we show that this edge has minimum weight
among all replacement edges.

LEMMA 4. Assumgiii) and that F is a minimum spanning forest. Théor
any tree edge ,eamong all replacement edgabe lightest edge is on the maxi-
mum level.

PROOF. Lete; ande; be replacement edges ferLet C; be the cycle induced
by e ;thene € Ci. Suppose, is lighter thare,. We want to show tha(e;) > ¢(e).

Consider the cycl€ = (C; U Co)\(C1 N Cy). SinceF is a minimum spanning
forest, we know thag is a heaviest edge dB;. Hencee; is the unique heaviest
nontree edge ol€. By (iii), this implies thate, has the lowest level of. In
particular,t(e;) > ¢(e). O

Since our algorithm is just a specialized version of the decremental connectivity
algorithm, we already know that (i) and (ii) are maintained.

LEMMA 5. The algorithm maintaingiii ), that is that every cycle C has a
nontree edge e with (8 = maxcw(f) and£(e) = min;cf(f).

ProoF. Initially (iii) is satisfied since all edges are on level 0. We now show
that (iii) is maintained under all the different changes we make to our structure
during the deletion of an edge. If an edsis just deleted, any cycle 6 \ {e} also
existed inG, so (iii) is trivially preserved.

Our real problem is to show that (iii) is preserved during Replace when an edge
e either gets its level increased, or becomes a tree edge. We may assueis that
unique lowest heaviest nontree edge on some ycler otherwise (iii) cannot get
violated. Based on these assumptions we will show (1) that all other edge€from
incident toT, have level>£(e), and using (1) we will show (2) th& cannot leave
Ty. From (2) we conclude tha cannot be a replacement edge, and from (1) and
(2) we conclude that has strictly lower level than all other edgesGnhence that
e still satisfies (iii) when increased.

We now prove (1). Let be the level ofe. Whene is next to be considered by
Replace, we know that all edges in the tigehave level>i. Also, we know that
any nontree edge incident I and strictly lighter thare has level>i. Further,
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sincee was lowest orC and sincee was the unigue heaviest lowest nontree edge
on C, we know that any nontree edge @as heavy ag has level>i. Thus, we
conclude (1), that all edges fro@incident toT, have level>i.

To prove (2), suppose th@tleavesT,. ThenC has at least two edges leavilig
one of which is noe. Call this edgef . If f has leveli, it would be a replacement
edge, and from the previous section, we know that there is no replacement edge
on level>i. Hence/£(f) < i, contradicting (1), so we conclude (2), tt@mnever
leavesT,.

As discussed above, (1) and (2) implies that (iii) does not get violated.

We have now established that our invariants (i), (i), and (iii) are maintained.
Hence, given that we start with a minimum spanning forest, Lemma 4 ascertains
that if a tree edge is deleted, it is replaced by a lightest replacement edge. Thus, our
spanning forest will remain minimal, as desired.

The ET-trees from Section 2.1 are already made to return a minimum weight
key, which here corresponds to the desired lightest nontree edge incident to a tree.
Hence, our time bounds are the same as for connectivity startingmvetges,
each with a potential cost @(log? n). We conclude

THEOREM 6. There exists a deletions-only MSF algorithm that can be initial-
ized on a graph with n vertices and m edges and support any sequence of deletions
in O(mlog?n) total time.

As for connectivity, the space bound at any tim&ign + nlogn) with m being
the current number of remaining edges.

5. Fully Dynamic MSF

To obtain a fully dynamic MSF algorithm, we apply a general reduction from a fully
dynamic MSF problem to a series of decremental MSF problems. Essentially, our
reduction is that of Henzinger and King [1997a, pp. 600-603]. Their reduction re-
guires, however, that the decremental structure can support inserting certain batches
of edges while we want to reduce directly to purely decremental MSF problems. To
obtain such a reduction, we combine the above mentioned technique of Henzinger
and King with a contraction technique of theirs presented in Henzinger and King
[1997a]. Our reduction can be formally characterized as follows:

THEOREM 7. Suppose we have a deletions-only MSF algorithm that for any
k, I, can be initialized on a graph with k vertices and | edges and support any
sequence of deletions in total time(IO t(k, 1)) where t is nondecreasing. Then
there exists a fully dynamic MSF algorithm for a graph on n vertices starting with
no edgessupports m insertions and deletions in amortized time

log,m j . _
O(Iog3n + ) > t(mingn, 2}, 21)) .
i=1 j=1

J

Combining Theorem 6 and Theorem 7, we conclude
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THEOREM 8. There is a fully dynamic MSF algorithm that for a graph with n
vertices starting with no edgesnaintains a minimum spanning forest ir(I8g*n)
amortized time per edge insertion or deletion.

The rest of this section presents a construction proving Theorem 7.

5.1. HGH-LEVEL DESCRIPTION We support insertions via a logarithmic num-
ber of decremental MSF structures. When an edge is deleted, it will be deleted from
all the decremental structures, and a replacement edge will be sought among the
replacement edges returned by these. When an edge is inserted, we union it with
some of the decremental structures into a new decremental structure.

More precisely, besides maintaining a minimum spanning fofesft G, we
maintain a setd = {Ao, ..., AL}, L = [log, m], of subgraphs of5, and for
eachA;, we will maintain a minimum spanning foregt. We refer to edges of
F asglobal tree edgesnd the edges in th& aslocal tree edgesAll edges
of G will be in at least oneA;, soF < | J; Fi. Further, we have the following
invariant:

(iv) For each global nontree eddgee G\ F, there is exactly onesuch thatf e
A\F andif f € Fj, thenj > i.

The following lemma states that when a global tree exigeleleted, we can find
its replacement by deletirgfrom all A; it occurs in.

LEMMA 9. If f is the lightest replacement edge for a global tree edgthen
f is the lightest replacement edge for e in at least one A

PrOOF  Sincef isnotinF yet, by (v) there is an such thatf € Aj\F. When
ehas been deleted, is a global tree edge 6\ {e}, but thenf must also be a local
tree edge in the subgraph\{e} € G\{e}. O

Before presenting the details of a deletion, we describe insertions

Insert(e). Letv andw be the end points &. If v andw are not connected by,
we just adceto F. Otherwise, ifeis lighter than the heaviest eddgeon the path
from v to w, we replacef with e in F, and updated with {f} as described
below. Finally, if the path fronv to w does not contain an edge heavier tlean
we updateA with {e}.

Deletde). First, we delete from all A; it appears in. LeR be the set of returned
replacement edges.éfe F, we deletee from F. Subsequently, we chedkfor
edges reconnecting. If R contains any such edges, we pick the lightest such
edgef. By Lemma 9,f is the correct replacement edge frso we insertf
in F. Finally, no matter whethez was a global tree edge or not, we updzte
with R as described below.

Update A with the edge setD. First, we find the smallesj such that|(D U
Un<; (An\Fa))\F| < 2I. Then we set

Aj:=FuDU| J(An\Fn). (1)
h<j

initializing A; as a new decremental MSF structure. Finally, wefset= ¢ for
allh < j.
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By definition of j, we haven > |(D U Uy, ; (AWFn)\F| > 217, soj < [log, m] =
L, and hence we are not introducing any néy The correctness of Insert and
Delete now follows from:

LEMMA 10. Both Insert and Delete resto(e).
ProOOF  The proof divides into two steps.

(a) First, we show that before updating with D, it is only the edges irD for
which (iv) may not be satisfied.

(b) Second, we show that updatisgywith D establishes (iv) for the edges D
while not destroying (iv) for any other edge.

The two steps together establish the restoration of (iv).

(a) With Insert, since we do not changkbefore the update, our only concern is
a new global nontree edge. This is eitkéf e does not go irF, or an edgef thate
replacesirF. In either cased is subsequently updated with the new global nontree
edge. With Delete, we get no new nontree edges, so our only concern is edges
changing status in som#& . The edges changing status before the updai¢ arfe
exactly the replacement edgesRrthat we later update with. This completes.(

(b) We now show that the update df establishes (iv) for the edges . This
follows if we can show that when the update starts, the edgBsark not nontree
edges in any4;. In case of Insert, our concern isdfreplaces an edgé which is
then used for the update. Howevérwas a global tree edge, Jomust be a local
tree edge in any it appears in. In connection with Delete, teE D = R. Then
r was a replacement edge from some meaning that it was a nontree edgetin
However, by {v), this means that is not a nontree edge in any oth&y. Further,
sincer has replacedin A;,r is no longer a nontree edge in aAy. Thus, Update
establishesiy) for the edges irD.

To see that Update does not destrigyfor any edge outsidB, let f be a nontree
edge satisfyingiy) before the update and lebe theA; in which f appears as a
nontree edge. If < i, by (iv), f does not appear in ank,, h < j, and hencef
is not affected by the update. If, on the other hdndg, j, then after the updatdf,
is still not a nontree edge in ad, h > j > i, and clearlyf becomes a nontree
edge inA; if f is a global nontree edge. This completes st§p (I

We are going to represent the local tree edges implicitly, so for efficiency, our
main concern is the number of local nontree edge initializations in (1.) These are
amortized over global edge deletions.

Note that, for our analysis of efficiency, it is valid to assume that all edges end
up being deleted; for we always start with an empty graph, so given any operation
sequencs, if we continue it by deleting all edges, we get a sequeBicevhich is
at most twice as long. Hence, if we can show $that the amortized operation
costisT, it follows that the amortized operation cost fxwvas at most Z.

LEMMA 11. For each edge deletignfor each i = O,..., L, and for each
j =0,...,i, we make at most local nontree edge initializations in ;An (1).

PrOOF  All initializations happen in connection with an update when we set
Aj == F U D Uy.;(An\Fn). We are only going to count the initializations with
nontree edges that either come fré@or for someA, whereh < j. By definition
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of |, I(D U Up<; (A\Fn)\F| > 21~ while [(D U U,,_;(An\ Fn))\F| < 2J, so
we know we are counting at least half the local nontree edge |n|t|aI|zat|ons

Consider the life cycle of some edgén .A. An incarnation of an edgeis live
in Aj if it is nontree inAj, and dead otherwise. Byif, each edge has only one
live incarnation.

Suppose during an update.dfwith D thateis initialized as a local nontree edge
into A;. If e € D, this is the birth, or rebirth oé. Otherwise ¢ comes from some
An, h < j.If h = j, we do not count the initialization. Otherwise, we claim that
there is a live incarnation af among theA,, h < j, and it is this live incarnation
that we view as being moved up froAy to A;. Now e can only be initialized as
local nontree edge A, if it is also a global nontree edge, but then ki) (he first
instance ok in someA is live, so indeed the update is moving a live instance of
e up from someA;, to A; whereh < j.

Our final step is to note that the only waycan die from some\; is if eithere
is deleted globally, in which caseescapes the cycle of rebirth, or if it becomes a
local tree edge irA;. The latter requires that some other edge is deleted fpm
ande comes in as a replacement edge. Themill be moved toR from which it
will be reborn in the subsequent update. We attribute the latest rebiethrat all
the progressive moves effrom A, to A;, h < | to the death o€&. This is at most
one initialization in eact; for j =0, .

Since edges only die in connection Wlth global deletions, and since each global
deletion kills at most one edge from ea8h the result follows. [

At present, the number of initializations of local tree edges is not efficiently
bounded. As mentioned previously, to resolve this, we only mairamplicitly.
Instead of addindg= to A; in an update, we add a foreBt of super edges®
each representing a pathin F. The super edges represent the minimal set of
nonoverlapping paths connecting the end points of the nontree edgdesTimus,
F’ is an unrooted tree where degree 1 or 2 vertices are end points of nontree edges
in A;. It follows that there are less than twice as many edgées’ias there are
end-points, and for each nontree edge, we have two end-points. Thus,

LEMMA 12. For each nontree edge initialized inj Athere are at most mogt
super edges initialized in A

A super edgesp representing the patR is assigned the maximum weight in
P, andep is deleted if any edge fror® is deleted. Since deleting edges fra¥n
cannot turn tree edges into nontree edges, our replacemeéitwith A in the
deletions only structures is valid. From Lemmas 11 and 12, we conclude

LEMMA 13. The total cost of the decremental MSF structures is
O(_ %™\, t(min{n, 21, 21).

5.2. IMPLEMENTATION. For our implementation of the above reduction, we
shall use the top tree data structure from Subsection 2.2. Our main challenges are
in connection with super edges. First, to implement Update, we need to identify
the super edges fok;. Also, when an edgeis to be deleted fron#;, we need to
check whether it is part of a path representing a super edge, which is to be
deleted fromA;.
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For eachA;, we maintain a copf§' of F from whenA; was last initiated. LeS
denote the set of end-points of nontree edge4;ifrom the initiation. To identify
the super edges, we take the vertices frBmmne at a time, incrementally adding
super verticeso the tree of super-edges. The paths between the super vertices in
F' are thersuper pathgo be contracted to super edges.

More precisely, every time we add a vertex S, we do as follows. Firsty is
marked as a super vertexMfis not connected s to any other super vertex, we
are done. Otherwise, we find the nearest vexter some super path.xXfis a super
vertex, we simply add the new super path - X. Otherwise, since the super paths
only intersect in the super verticesmust be internal to a unique current super
patha---b. We now markx as a new super vertex, delete the super path b
and add the three super paths - x, a--- X, andb- - - x. To facilitate an efficient
implementation, note

LEMMA 14. Supposer isasuper verte@nd letv be any vertex. Then the vertex
X on a super path that is nearest to v is on the path-v. Further, if X is internal
to a super path Pthen P contains the edge leaving x on the path directed from v
tor.

PROOF  First, suppose for a contradiction thais notonv - - -r. Sincex is on
a super path andis a super vertex, all vertices on - -r must be on super paths.
In particular, this means that the first intersectidbetweenv ---r andx---r is
on a super path, but is closer tov thanx, contradicting the choice of. [

As mentioned, our implementation is based on the top trees from Section 2.2.
When we start the process of finding the super paths, we assume that we already
have a top tree ovef'. This is achieved by updating' to F every time we start
initializing Ai. Hence, between initializations &, we have to record the changes
to F, that is, we maintain the difference betwdenandF. WhenA, is initialized,
we first delete all edges deleted frafmsince last initialization, and second we
insert all the edges inserted ih SinceF has remained a tree during the updates,
so doesF'. As a consequence, each changd-afause up td. top tree updates,
leading to a cost per change Bfof O((logn)?).

With each tre€l’, we associate a variable super-roathich isnil if T does not
contain a super vertex, and otherwise contains an arbitrary super vertext from
Thus,v is connected to a super vertex if and only if super-tgf, # nil.

For each clusteC and boundary vertea of C, we will maintain the vari-
ables nearest-super-path and nearest-super-path-vegtggxdefined as follows:

If there is no super path containing an edge fra(), nearest-super- path =
nearest-super-path-vertex = nil. Otherwise, letP be the super path containing
an edge ofr (C) nearest t@, and letx be the vertex ofP on z(C) closest toa.
Then, nearest-super-path = P and nearest-super-path-vegtex= x.

Suppose the above variables are properly maintained for the root clusters. As-

suming this, we can implement the routine for adding a new pomtSas follows:

First, we markv as a super vertex. Next, we set= super-rogtqg,. If r = nil,

Vv is not connected to any other current super vertices, so we complete by setting
SUper-rogti,q,) = V. Otherwise, we want to find the super path verteslosest

tov. This is done by setting := Expose(, r) andP = nearest-super-path. If

P = nil,x =r by Lemma 14. Otherwise, we set= nearest-super-path-vertex
Having identifiedx, we markx as a new super vertex.
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Assume we are in the complicated case whewas not already a super vertex.
We still need to replac® with the three super paths.--x, a---x, andb- .- X
wherea andb are the end points. Here we represénas identifier with which
we have associated the pair of poings i§). Further, withP, we associate a list
of pointers to all references tB in the top tree, so that we can easily erase all
information aboutP. Since the erasing the information is as quick as inserting it,
we can ignore it in the asymptotic analysis of our algorithm. Having erased the
information aboutP, we free the identifier for later reuse.

We now allocate three new super path identifiegs,, Pa x), andPgp x). Insert-
ing the information about these is done using a variable lazy-supeg-fizhfor
a clusterC is eithernil or contains an identifier of a super path containi{¢).

Now, for any clusteD, eitherD has a path ancest@ with lazy-super-path #

nil, and thenz(D) < =n(C) < lazy-super-path, or nearest-super-paih

and nearest-super-path-vergex have the correct information for each bound-
ary vertexa € 9D. Since a root cluster has no ancestors, it always has the
correct information.

To insert the three new super paths, for= v, a, b, we insertP y, as fol-
lows: First, we seC := Exposey, ¥ and then we call Add-patly{ Py ) de-
fined below.

Add-path(C, P). Set lazy-super-path:= P, and for eacla € 9C, set nearest-
super-path , := P and nearest-super-path-vegex.= a.

To complete the description of the procedure for finding the super edges, we
need to tell how to update information in connection with Merge and Split.

C := Merge(A, B). If C is not a path cluster (Figure 1(3)—(4)), we just set all
variables ofC to nil and return.

Otherwise, first, we set we set lazy-super-path nil.

If C has exactly one path child (Figure 1(2)), letoaC = {a,b} = 9A.
We then copy the information fromA directly to C. That is, forc = a, b,
we set nearest-super-path := nearest-super-path and nearest-super-path-
vertex ¢ := nearest-super-path-vertex

If C has two path children (Figure 1(1)), I8C = {a,b}, 0A = {a,c},
and 0B = {c,b}. If nearest-super-pajly, # nil, set nearest-super-path-
c.a .= Nearest-super-path and nearest-super-path-veex:= nearest-super-
path-vertex ,. Otherwise, if nearest-super-path = nil, set nearest-super-
path: 5 := nearest-super-pagh and nearest-super-path-veigex:= nearest-
super-path-vertex.. The values of nearest-super-p&hb) and nearest-super-
path-vertexC, b) are found symmetrically with and B replacinga and A.

Split(C). We only have to update information if lazy-super-gata nil. In this
case, for each path child of C, call Add-path@, lazy-super-patk).

We have now shown the set of super edges can be constructed. When an edge
(v, w) is globally deleted, for each we want to check if\{, w) is on a super
path corresponding to a super edgeAn This can only be the case ¥,(w) is
an edge inF'. If so, we take the top tree ovét', setC := Exposef, w) and
P := nearest-super-pat@(v). If P = nil, (v, w) is not in a super path. Otherwise,
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P isthe identifier for the super path containing ), and withP we can easily store
information about whether the corresponding super edgb) (has been deleted
from A. If not, we deleted, b) from A..

LEMMA 15. For a set S of end-points of nontree edgi® corresponding set
of super edges is found in time([8| log n) time. Further identifying a potential
super edge from jAcovering an edge e to be deleted take$o@ n) time.

PrRoOOF Each Merge and Split takes constant time, so by Theorem 1 each top
tree operation take®(logn) time. [

PROOF OFTHEOREM7. From Lemma 13, we have already accounted for the
cost of the decremental MSF structures. It remains to show that the remaining cost
of the other operations ®((logn)3).

First, consider Insert and Delete without the call to Update. In connection with
Insertg), we need to check if there is a pathFnbetween the end points ef and
if so, what is the heaviest edge on such a path. As described in Corollary 2, this can
be done in timeD(logn).

In connection with Delete), first, for eachi we need to check éis in a super
edgee’ of A{. By Lemma 15, this take®(logn). Second, whe or € has been
deleted fromA{, a replacement edgemay be returned, and then we have to check
if the end points off are connected ifr. This takesO(logn) time using the Find
operation of the top trees. Hence, the cost of Delete ignoring Upd@glisg n)>?).

Finally, for Update, our problem is to find the super edges. By Lemma 11 and 15,
this has a cost o@(Z!":gfm Z'j:1 logn) = O((logn)®) per delete. This completes
the proof of Theorem 7.

The total number of edges in the decremental MSF structur@¢ny, so their
total space i©D(mlogm). To store theD(logn) treesF', including their top trees
and their difference front, we needO(nlogn) space, so the total space for our
fully dynamic MSF algorithm iO(mlogn).

6. 2-Edge Connectivity

In this section, we present aB(log*n) deterministic algorithm for the 2-edge
connectivity problem for a fully dynamic gragh. An important secondary goal is
to present ideas and techniques that will be reused in the next section for dealing
with the more complex case of biconnectivity. As in the previous sections we will
maintain a spanning foregt of G.

A tree edgee is said to becoveredby a nontree edgev(w) if e € v---w,
that is, ifeis in the cycle induced byw( w). Hence,e is a bridge if and only if
it is a tree edge not covered by any nontree edge. Since 2-edge connectivity is
a transitive relation on vertices, it follows that two verticeandy are 2-edge
connected if and only if they are connectedriand all edges i - - - y are covered
[Frederickson 1997].

Recall from connectivity that our spanning fordstwas a certificate of con-
nectivity in G in that vertices were connected @ if and only if they were so in
F. If an edge fromF was deleted, we needed to look for a replacement edge re-
connectingF, if possible. An amortization argument paid for all non-replacement
edges considered.
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Now, for 2-edge connectivity we have a certificate consisting edgether with
a setC containing an edge covering each non-bridge edde ifhus, two vertices
are 2-edge connected & if and only if they are so infF U C. However, if an
edgef e C is deleted, we may need to add several “replacement edgé&s'ino
order regain a certificate. Nevertheless, by carefully choosing the order in which
potential replacement edges are considered, we will be able to amortize the cost of
considering all but two of them.

6.1. HGH-LEVEL DESCRIPTION The algorithm associates with each nontree
edgee a levell(e) < ¢max = [log, n]. However, in contrast to connectivity, the
tree edges do not have associated levels. For gdeh G; denote the subgraph
of G induced by edges of level at leastogether with the edges d¥. Thus,
G=Gy2G12--- DGy, 2 F. The following invariant is maintained:

(i) The maximal number of vertices in a 2-edge connected componéait isf
[n/2'7. Thus, the maximal relevant leveldg,ax.

It should be noted here that we round up instead of down for the compo-
nent sizes. This will be significant for biconnectivity, where we will use that
m/27 < 2[n/2+14.

Initially, all nontree edges have level 0, and hence the invariant is satisfied. As
for connectivity, we amortize work over level increases. We say thategisl to
increase the level of a nontree edg® | if this does not violate (), that is, if the
2-edge connected componentsdh G; U {e} has at mosfn/2!] vertices.

Foreverytree edgee F,weimplicitly maintain theover level ¢e), which is the
maximum level of a covering edge. Hencg) is also the maximal level for which
eis in a 2-edge connected component I§ a bridgec(e) = —1. The definition
of a cover level is extended to paths by defindi®) = minep c(€). During the
implementation of an edge deletion or insertion,¢h@lues may temporarily have
too small values. We say thatandw arec-2-edge connected on leveifithey are
connected and(v - - - w) > i. Assuming that alt-values are updated, we have our
basic 2-edge connectivity query:

2-edge-connecte@, w). Decide ifv andw arec-2-edge connected on level 0.
For basic updates @fvalues, we have
InitTreeEdge(v, w). Setc(v, w) ;= —1.

Cover(v,w, i). wherev andw are connected. Forale v---w, if c(e) < i, set
c(e):=i.

We can now compute-values correctly by first calling InitTreeEdge ) for all
tree edgesy, w), and then calling Coveq( r, £(q, r)) for all nontree edgesy(r).
Inserting an edge is straightforward:

Insert(v,w). If v and w are not connected irF, (v,w) is added toF
and InitTreeEdge(, w) is called. Otherwise, set(v,w):=0 and call
Coverf, w, 0). Clearly(i’) is not violated in either case.

In connection with deletion, the basic problem is to deal with the deletion of a
nontree edge. If a nonbridge tree edgew) is to be deleted, we first swap it with
a nontree edge as described in Swap below.
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Swap(v, w). Where{, w)isatree edge thatis notabridge, that(g, w) > 0. Set
a = c(v,w), and let &, y) be a nontree edge covering, (v) with £(x, y) = a.
Setf(v,w) ;= «. Replace {, w) by (x, y) in F. Call InitTreeEdgeX, y) and
Coverf, w, o).

To see that Swap does not violate invari@f)t we argue much stronger that Swap
does not change the 2-edge connected components @artiyi < «, then both
(v,w) and &, y) are inG; both before and after the call, 8 is unchanged.
If i > «a, (v,w) was a bridge inG;. Then §, y) must be a new bridge ifs;,
for otherwise there should be a levaiontree edgeq r) covering &, y) after the
swap, but this edge would have coveredw) before the swap. However, replacing
one bridge with another, does not affect any 2-edge componer@s. dthus, no
2-edge connected component is affected in@ny

Next we need to argue that the cover information is correctly updated. All edges
covered by ¥, w) after the swap, except for(y), were covered by, y) before
the swap, and hence theivalues where at leag{x, y) = «. Thus, when we call
Coverf/, w, «), we do not affect any of thesevalues. This lack of change is correct
since the 2-edge connected components are not changed iB;a@oncerning
(X, y), Coverf, w, ) setsc(x, y) := a, which is correct sincex(, y) is a bridge in
anyGj withi > «.

We are now ready to describe how to delete an edge.

Deletgv, w). If (v, w) is a bridge, we simply delete it and return.

Assuming that \{, w) is not a bridge, if ¢, w) is a tree edge, we first call
Swap§, w), turning {/, w) into a nontree edge. We then call Uncowewy, £(v, w))
as defined below, delete the edgew), and finally, fori := ¢(v,w), ..., 0, we
call Recoveny, w, i) as defined below.

The point in Uncover is to remove all cover information potentially stemming
from (v, w). This is done as follows:

Uncover(v, w,i). Wherev andw are connected. Foradle v---w, if c(e) <,
setc(e) .= —1.

Our problem now is that the-values onv---w may have become too low.
Formally, we say that - - - w isfineon leveli if all c-values inF are correct, except
thatc-values< i onv - --w may be too low. After the call Uncover(w, (v, w))
in Delete,v - - - w is fine on level(v, w) + 1.

The procedure Recover(w, i). defined below assumes that- - w is fine on
leveli + 1, and then it makes - - - w fine on leveli. Thus, given a correct im-
plementation of Recover, all cover information will be correct after the final call
Recovery, w, 0) in Delete.

A correct implementation of Recovet(w, i) would be to take all levedl edges
(g, r) covering edges in - - - w, and call Cover{, w, i). As in basic connectivity,
we would like to amortize the calls by first increasing the levetpf toi + 1 and
then call Coverd, r, i + 1). This time we need to be a lot more careful, however.
The basic problem is that we are not just trying to recover a single component with
a single replacement edge, but rather we have to recover a hole chain of 2-edge
connected components along- - w.

Before presenting our implementation of Recover, consider ailedde ¢, r)
covering some edge w- - - w. By definition,q---r Nv---w # @. Since cover
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information is correct outside - - - w, it follows thatc(meefq, v,w)---q) > i.
This condition is, in fact, equivalent tg(r) being in the same 2-edge connected
component asy, w) in G; before the deletion ofu(, w).

Recovelv,w,i). We divide into two symmetric phases. Set=v and letu
step through the vertices of- - - w towardsw. For each value ofl, consider,
one at the time, the level nontree edgesg(r) with meetq, v, w) = u and
c(u---q)>i.lflegal,increasethelevel ofi(r)toi +1andcall Covedq,r, i +1).
Otherwise, we call Coveq(r, i) and stop the phase.

If the first phase was stopped, we have a second symmetric phase, starting with
u = w, and stepping through the vertices iw - - - v towardsv.

Our final step is to establish the correctness of Recover.

LEMMA 16. Assuming that v--w is fine on level i 1. Then after a call
Recovefv, w, i), v---w is fine on level i.

PrROOF. For brevity, we say that a leveal nontree edge igelevant if
c(meefq,v,w)---q) >i.

First, note that we do not violate- - - w being fine on level + 1 if we take a
relevant edgeq, r) and either call Coveqr, i) directly, or first increase the level
of (g,r)toi + 1, and then call Coveq(r, i + 1).

Given thatv-.-w remains fine on level + 1, to prove that it gets fine
on level i, we need to show that for any remaining relevant edges)(
all edgese in g---r Nv---w have c(e) >i. This is trivially the case if
phase 1 runs through without being stopped, for then there are no remaining
relevant edges.

Now, suppose phase 1 is stopped. uebe the last value afi considered, and
(qz, r1) be the last edge considered. Then, increasing the levgl afi{ is illegal.
Hence, phase 2 will also stop, for otherwise, it would end up illegally increasing
the level of €, r1). Letu, be the last value af considered, and lety, r,) be the
last edge considered in phase 2.

Since the phases were not interrupted for nontree edpge$ ¢overing edges
beforeu; or afteru,, we know that if ¢, r) remains on level, it is because
g---rnv---w C u;g---Up. Hence, we prove fineness of levelf we can show
that allc-values inuy - - - u, are>i.

For k := 1,2, from the illegality of increasing the level ofy ry), it fol-
lows that the 2-edge connected compon€ptof o in Gj1U {(gk, r)} has
>[n/2'*+1] vertices. However, we know that before the deletion \afw(), C;
and C, where both part of the 2-edge connected compoimf G; contain-
ing (v, w), and this component had at mgst/2'] vertices. HenceC; N C, # @.
Thus,C; and C, are contained in the same 2-edge connected compdhenft
Gi+1 U {(01,r1), (02, r2)}. Since covering is done for all leveH 1 edges, it fol-
lows that our calls Coveqf, rq, i) and Covengp, r», i) imply that all tree edges in
D getc-values>i. Moreoveruy € Cy, souU; ---Uy € C, and hence all edges in
Uq - - - Uy havec-values>i. [

After the last call Recovev( w, 0), we now know that - --w is fine on level
0, that is, allc-values in F are correct, except that-values <0 onv..-w
may be too low. However, sincel is the smallest value, we conclude that all
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c-values are correct, and hence our fully dynamic 2-edge-connectivity algorithm
is correct.

6.2. IMPLEMENTATION. The algorithm maintains the spanning forest in the
top tree data structure from Section 2.2. For each clu§&teiwe maintain
coveg = c(rr(C)). Thus, 2-edge connectivity queries are implemented by:

2-edge-connecte@, w). SetC := Exposey, w). Return (covef > 0).

In connection with Swap, for a given tree edgew), we need a covering edge
with £(e) = c(v, w). This is done, by maintaining for each clustea nontree edge
cover-edgg covering an edge on(C) with ¢(cover-edgg) = coveg. Then, the
desired edge is found by settingC := Exposey, w) and returning cover-edge
Calls to cover and uncover also reduce to operations on clusters:

Cover(v,w,i). SetC := Exposey, w). Call Cover(, i, (v, w)) defined below.
Uncover(v,w,i). SetC := Exposey, w). Call UncoverC, i) defined below.

The point is, of course, that we cannot afford to propagate the cover/uncover
information the whole way down to the edges. When these operations are
called on a path clusteC, we will implement them directly inC, and
then store lazy information if€ about what should be propagated down in
case we want to look at the descendantsCofThe precise lazy information
stored is

—coveg, coveg, and cover-edge where covef < covef. This represents that
for each path descendabtof C, if coverp < cover;, we should set cover:=
covef and cover-edgg := cover-edgg.

The lazy information has no effect if coyer= coveg = —1. Trivially, the cover
information in a root cluster is always correct in the sense that there cannot be any
relevant lazy information above it. Moreover, note that the lazy cover information
only effects(C), hence only path descendantd®fThus, the cover information
is always correct for all nonpath clusters.

In order to guide Recover, we need two things: first, we need to find theilevel
nontree edgeg( r); and second, we need to find out if increasing the leved of
toi + 1 will create a level 4+ 1 component that is too large. Thus, we introduce
counterssizeandincident that are further defined so as to facilitate efficient local
computation of Cover, Uncover, Split, and Merge.

—For any vertex and any level, letinciden{ ; be the number of leveti nontree
edges with an end-point

—Leti andj be levels, and lat be a boundary vertex of a path clusterLetlc v ; j
be the set of internal vertices of the clustethat are reachable fromby a path
P in F wherec(P N (C)) > i andc(P\r(C)) > j. Thensize v, = llcv,i,jl
and inciderg vi,j = (X ey, incident,, ;) is the number of (directed) levgl
nontree edgeg(r) withqg e I’c,v,i,j . By directed, we mean thaq(r) is counted
twice ifr isalsoinlcy; ;.

—Similarly for any levei and any nonpath clust€with 9C = {v} letIc y; be the
set of internal verticeg from C such that(v---q) > i. Thensize v = |lc.v.il
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and incideng vi = (3_yc.,,incidenty ;) is the number of (directed) levehon-
tree edgesq, r) withq € Icy;.

For an edgey, w), we maintain covey ) no matter whethew( w) is a path cluster

or not. If (v, w) is a path cluster, it has no internal vertices, so all of the above
size- and incident-counters are zero. Howevey,ig the only boundary vertex of
(v, w), sizqyw)v,i = 1ifi < coveyyw); 0 otherwise. Similarly, incide@tw) v, =
incident; if i < covegy w); O otherwise.

When a nontree edge gets inserted or deleted, or its level changes, we al-
ways expose its end-points so that they are not internal to any clusters. This
has the convenient effect that we do not affect any of the incident-counters
at the clusters until we start covering or uncovering the path between the
end-points.

We are now ready to implement all the different procedures: For any vertex
and any level, let sizg ; := 1 and

Cover(C,i,e). If coverc < i, set coveg = i and cover-edge = e. If
i < covef, do nothing. If covex > i > covef, set covf:: i and
cover-edgg = e If i > coveg, set covef = i and covef := i and
cover-edgg = e. For X € {size, incidentand forall-1<j <i and - <
K < £maxand, forv € 0C, setXc v, jk := Xcv,~1k-

Uncover(C,i). If coverc < i, set coveg := —1 and cover-edge := nil. If

i < coveg, do nothing. Ifi > coveg, set covef := —1 and covef =
max{covef;, i} and cover-edge := nil. For X € {size, incident and for all
—1<j<riand-1<k < {maxand, forv € 9C, setXc v jk := Xcv,i+1k-

Clean(C). For each path childA of C, call Uncover@, coveg) and
Cover(A, cove, cover-edgg). Set covef := —1 and covef = —1 and
cover-edgg = nil.

Split(C). Call Clean(). DeleteC.

C:.=Merge(A, B). SupposedC = {a} anda < JA (Figure 1(3—-4)). For
X :=size, incident andj :=0,...,¢max We compute Xc,; as follows.
If A is a nonpath cluster, so i8 (Figure 1(4)), and thendA =
9B = {a}. In this case, we setXca:= Xaaj+ Xgaj.- Otherwise
(Figure 1(3)),dA = {a,b} and B = {b}, in which case we set
Xcaj = Xaajj(+Xb,j + Xgp,j if covera > j).

SupposéiC = {a, b}, a € A, andb € 3B (Figure 1(1-2)). LeD be the path
child of C minimizing covep. Then set covey := covelp and cover-edge:=

cover-edgg. Set covef = —1 and covef = —1 and cover-edge =
nil. For X :=size, incident and, j := —1,..., {max We computeXc ai j
as follows: Xc,i,j is symmetric). If A is a nonpath cluster (Figure 1(2)),
dA = {a} anddB = {a, b}. In this case, we seXc ai ‘= Xaaj + XBai,j-
Otherwise, if B is a nonpath clusterpA = {a,b} and 9B = {b}, and
we set Xcai,j := Xaai j(+Xgcj if covera > i). Finally if both A and B

are path clusters (Figure 1(1JA = {a,c} anddB = {c, b}, and we set
Xc.aij = Xaai j(+Xc,j + Xpci,j if covera > i).
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Recovel(v, w, i).
—Repeat once withh = v and once withu = w,

—SetC := Exposey, w).
—While incident , —1; + incident,; > 0 and not stopped,
—Set @, r) :=Findu, C,i).
—D := Exposeq{,r). _
—If sizep g 141+ 2 > n/2+1, ‘42’ adds the two external boundary
vertices.
—Cover(, i, (q,r)).
—Stop the while loop.
—Else
—Set ¢(q,r) := i + 1, decrement incidegpt and incident; and
increment incident; 1 and incident; ;1.
—CoverD,i +1,(q,r)).
—C .= Exposey, w).

Find(a, C,i). Ifincident; > O then return a nontree edge incidenaton level
i. Otherwise, call Cleaff) and letA andB be the children o€ with A nearest
to a. If Ais a nonpath cluster and incident; > O or A is a path cluster and
incidenty o, —1; > O, then return Findy, A, i). Else, letb be the boundary vertex
nearest t@ in B, return Findp, B, i).

THEOREM 17. There exists a deterministic fully dynamlc algorithm  for
maintaining 2-edge connectivity in a graphusing Qlog™n) amortized time
per operation.

PrROOF Cover(C,i,e) and UncovelC,i) both take O(log?n) time. This
means that Cleaﬁ:() and thus Split¢) takesO(log? n) time. Since Merge&, B)
also takesO(log? n) time, we have by theorem 1 that Link(), Cut(e) and
Exposey, w) takesO(log® n) time. This again meansthatFlndCoverEdge() 2-
edge-connected(w), Coverf ---w, i, €) and Uncovenf - - - w, |)takeO(Iog n)
time. Find@, C, i) calls CleanC) O(Iogn) times andthustake@(log n) time. Fi-
nally, Recover, w, i) takesO(log® n) time plusO(log® n) time per nontree edges
whose level is increased. Since the level of a particular edge is increased at most
O(logn) times we spend at mo§i(log* n) time on a given edge between its inser-
tion and deletion. []

The space usage of our fully dynamic 2-edge connectivity algorith@(is +
nlog?n) due to theO(log? n) countersXc.y;  stored with each path cluster. It is
possible to reduce the space@m + nlogn): using a more complicated merge,
it suffices that we only store th®@(logn) countersXc 1, j for the path clusters,
that is, we ignore the covering of the cluster path. The main complication is then
the merge in Figure 1(3) of a path clus#&and a nonpath clust@ into a nonpath
clusterC where we now need to determine how much of the cluster pahtbét
is covered on different levels. The time bounds are not affected by this change.

The query time for 2-edge connectivity abovediflog® n), but it can be reduced
to O(logn). The basic idea is to leave the top tree unchanged. The point is that, with
the general Expose, we perfoi@{logn) merges and splits, each at c@log? n).
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However, for our query, we only need to check if some covering is nonnegative,

and then we really only need to spend constant time per cluster considered.
Thorup [2000] has recently observed that the time bound for the updates can

be improved by a facto©(logn/loglogn). The essential point is that it suffices

to maintain our size- and incident-counters approximately, uSifigg logn) bits,

and then we can operate dd(logn/loglogn) of them in constant time. This

only works if we store all of theD(log? n) countersXc.y.i j for the path clusters,

that is, it does not work together with the above mentioned space improvement.

Summing up, Thorup gets an amortized operation tim® @g® n log logn) using

O(m+ nlognloglogn) space.

6.3. BRIDGES We note that the data already stored in the top trees make it easy
to search for bridges. First, we show how to augment our 2-edge connectivity query
to provide a bridge betweerandw if they are connected but not 2-edge connected.
That is, we have just s€ := Exposey, w), but found covex = —1. We then run

—While C is not an edge,

—Clean().
—Let A be a path child o€ with cover, = —1.
—SetC = A

—Return the edg€.

In Gabow et al. [1999] they want to list all the bridges betwgeandw, which
above means that they recurse fr@ron all path childrenA with cover, = —1,
instead of just one of them.

Another natural scenario is that we are given a vevteand want to determine
if it is connected to a bridge. In order to facilitate a recursive search, we consider
the existential problem of checking if a clust&rhas a bridge, that is, if it is not
2-edge connected. WK is a nonpath cluster withA = {a}, A has a bridge if and
only if sizea a0 < Sizen o 1. IfinsteadA is a path cluster witd A = {a, b}, Ahas
a bridge if and only if covex = —1 or Siz& 4,00 < SiZ€ra,-1.—1-

Find-bridge(v). Finds bridge connected tq if any.

—SetC := Exposey, v).
—If C has no bridge, return “The componentwois 2-edge connected”
—While C is not an edge,
—Clean().
—Let A be a child ofC containing a bridge.
—SetC := A
—Return the edg€.

Both of the above bridge finding procedures té&kgog® n) time. As for the 2-edge
connectivity query, this can be reduced@dlogn) time with a more complicated
algorithm that does not change the top tree.

7. Biconnectivity

In this section, we present ad(log®n) deterministic algorithm for the bicon-
nectivity problem for a fully dynamic grapts. We follow the same pattern as
was used for 2-edge connectivity. Historically, such a generalization is difficult.
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For example, it took several years to get sparsification to work for biconnectivity
[Eppstein et al. 1997; Henzinger and La Peit®95]. Furthermore, the generaliza-
tion in Henzinger and King [1995] of th®(log® n) randomized 2-edge connectivity
algorithm from Henzinger and King [1999] has an expected bour@{af log* n),
whereA is the maximal degree (Henzinger, personal communication, 1997). Our
main new idea for getting ®(log” n) bound for biconnectivity is an efficient re-
cycling of the information as described in Lemma 19 below.

One of the obstacles for biconnectivity is that it is not a transitive relation over
vertices. However, it is a transitive relation over edges in the sense that for edges
e, f,g,if eandf are in a biconnected component ahdndg are in a biconnected
component, then all of, f, andg are in the same biconnected component. Our
algorithm makes use of the transitivity over edges.

More particularly, in 2-edge connectivity, we used that when an edge)(was
deleted, the 2-edge connected components to be recovered were linearly ordered
along the patlv - - - w. Our amortization worked for all but one large middle com-
ponent, and hence when we had reached it from kathdw, we knew we had
visited all other components. In biconnectivity, we can have different biconnected
components meeting in each vertex v - - - w, and our problem is that we cannot
define a corresponding order for these. We circumvent this problem by recycling
some information, allowing us to skip some components.

Atriple is alength two patkyzin the graphG, and aree triple xyzs atriple inF.

Let (v, w) be a nontree edge. Then (v) coversall triples on the cycle induced by
(v,w)in F, thatis, {, w) covers all triplexyzC v - - - w plus the triplesvws'(v)
and vws'(w). Recall here thas"(v) is the vertex succeedingin v---w. The
covering of triples is symmetric, so when coverixigz it is understood that we
also coverzyx

We now definetransitively covered tripless follows: All covered triples are
transitively covered. Further, ¥yzandzyX are transitively covered, thexyX is
transitively covered.

LEMMA 18.

(a) Biconnectivity is a transitive relation over the neighbors of a vertendl if two
neighbors of u are biconnectgdl is in the biconnected component containing
them.

(b) Atriple xyz is transitively covered if and only if x and z are biconnected.

(c) Avertexy is an articulation point if and only if there is a tree triple xyz which
is not transitively covered.

(d) Two vertices v and w are biconnected if and only if for all xyx - - - w, Xyz
is transitively covered.

PrOOF.

(a) Letv andw be biconnected neighbors of By definition, eithery, w) is an
edge, or we have two internally vertex disjoint paths frota w. In either case, we
find a pathP from v to w not containingu, and thenP uis a simple cycle showing
that all ofu, v, andw are in the same biconnected component. Moreover, the cycle
shows that the edges,(v) and (i, w) are biconnected. Since biconnectivity is a
transitive relation over edges, it follows that biconnectivity is a transitive relation
over the neighbors af.
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(b) First, we show that we can restrict our attention to the case yaie a tree
triple. If x is not a tree neighbor of, let X’ be the tree neighb&*(y) of y. Then,
(X, y) coversxyX, soxyzis transitively covered if and only i'yz is transitively
covered. The cycle induced by,(y) containsx’, sox andx’ are biconnected. By
(a), biconnectivity over neighbors ofis transitive, sgy is biconnected tax if and
only if it is biconnected ta<'. It follows that we can replacg by thex’ in (b).
Similarly, if z is not a tree neighbor of, it can be replaced by the tree neighbor
s%(y). Thus, we may assume thatzis a tree triple when provingdoj.

Now, assume the two tree neighbarandz of y are biconnected. As iraf, we
can find a pathP from x to z not containingy. Let Ty, ..., T¢ be the subtrees of
F\{y} that P passes on the way fromto z. Further, letx; be the vertex of; that
is a tree neighbor of in F. Then,x; = x andxx = z. Now, fori =1, ...,k — 1,

P contains an edge betwe@nandT,;,; that covers« yx 1. It follows thatxyzis
transitively covered.

For the other direction, assume that the tree trxylds transitively covered. We
then have a sequenege, ..., X of neighbors toy such thatx; = x, xx = z, and
Xi Y41 IS covered by an edge. Let Ty be the subtree of \ {y} containingx;.
Let P; be the path inl; from x; to e;. Fori = 2,...,k — 1, let B be path in
Ti connectinge ;1 to g, and letPy be the path inT, connectings,_; to xx. Then
P: - - - P« is a path fronx to z disjoint fromxyz

(c) If yis not an articulation point, then any two of its neighbors are biconnected.
In particular, for any tree triplxyz x andz are biconnected, so by, xyzis
transitively covered. Conversely, if all tree triples are covered arachd z are
arbitrary neighbors of, thens*(y)ys*(y) is transitively covered, and henggzis
transitively covered. Thus andz are biconnected bybj.

(d) Suppose that all triplesyz C v - - - w are transitively covered. Byb}, each
edge pair X, y) and {y, 2) is biconnected, so by transitivity of biconnectivity on
edges, the first and the last edgevof - w are in the same biconnected component.
Hence,v andw are in this component.

Conversely, supposeandw are biconnected. By definition there are two inter-
nally vertex disjoint path$; and P, betweenv andw. For eachxyzC v---w,
there is aP, not containingy. Now, P U v ---w must contain a cycle containing
XyZ sox andz are biconnected, and hencgzis transitively covered byb). [

7.1. HGH-LEVEL. As with 2-edge connectivity, with each nontree edgee
associate a level(e) € {0, ..., ¢max, £max = [l0g, N1, and for each, we letG;
denote the subgraph @ induced by edges of level at ledstogether with the
edgesofF. Thus,G =Gy 2> G; 2 --- 2 G, 2 F. Here, for biconnectivity, we
will maintain the invariant:

(i”) The maximal number of vertices in a biconnected compone@t o [n/2'7.

As for 2-edge connectivity, the invariant is satisfied initially, by letting all nontree
edges have level 0. We say that itegalto increase the level of a nontree edge

J if this does not violatei(), that is, if the biconnected componentsih G; U {e}

has at mosin/2!7 vertices.

For each vertex and each level, we maintain a partitioning of all neighbors
of v in G such thau andw are in the same set if and onlyufwis a transitively
covered triple inG;. The set in the partitioning containingis denotedy ; (u). By
Lemma 18(b)u andw belong in the same set if and only if they are biconnected
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neighbors o¥/ in G;. Note that a neighbor i of v which is not a neighbor i5;
of v is a singleton element in the partition. It might seem more natural to exclude
such neighbors from the partitioning, but leaving them in saves on administration,
and gives the advantage that the partitioning does not depend on the bridges of

If PisapathinG, c*(P)denotes the maximakuch that for all triplesyz C P,
z € ¢j;(x). If there is no such, c*(P) = —1. Thus,c*(P) > i witnesses that the
end points ofP are biconnected on level Typically, P will be a tree path, but
in connection with Recover, we consider paths where the last afigg (s a
nontree edge.

As for 2-edge connectivity, the*-values may temporarily be too low. We say
thatv andw arec*-biconnected on levelif they are connected ar(v - - - w) > i.
If all c*-values are updated, we therefore have

biconnectedv, w). Decide ifv andw arec*-biconnected on level 0.

In connection with deletions, we are going to reuse the swap procedure from
2-edge connectivity. Recall from our analysis of Swap that it only affect&the
by swapping bridges. Hence, Swap does not affectcthealues. While Swap
does not affect the transitive covering of triples, it may strongly affect which
triples are covered, and this is one of the reasons why we maintain transitive
covering, not worrying about which covered triples are currently generating the
transitive covering.

For Swap, we need thevalues from 2-edge connectivity. That is, for each tree
edgee, c(e) should be the minimum level a nontree edge coveeriye maintain
the c-values via the procedures from 2-edge connectivity, prefixing the procedure
names by ‘2e-’.

For basic manipulation af- andc*-values, we have

Init Edge(v,w). Fori :=0,..., {max Setcy; (W) := {w} andcj,;(v) = {v}.
Moreover, if {7, w) is a tree edge, call 2e-InitTreeEdgeg).

Cover(xyzi). Unioncy ;(x) andcy ;(2) for j :=0,...,1.

Cover(v,w,i). Calls Cover¢ws’(w), i), Cover(vvs'(v),i), and Coverxyzi)
forall xyzC v---w. Finally, we call 2e-Covex(, w, i).

We can now compute afl andc*-values by first calling InitEdg&( w) for all
edgesy, w), and second calling Cover(w, £(v, w)) for all nontree edges/( w).
Inserting an edge is now straightforward.

Insert(v,w). If v andw are not connected i, (v, w) is added toF and
InitEdgef, w) is called. Otherwise, call InitEdge(w), seté(v,w) ;= 0, and
call Covery, w, 0).

On the high level, Delete is almost identical to 2e-Delete.

Deletgv, w). If (v, w)is abridge, we simply delete it, deletimgfrom c; (-) and
v fromcj, (-), and then we return.

Assuming that {,w) is not a bridge, if ¢,w) is a tree edge, we first
call Swapy, w), turning ¢, w) into a nontree edge. We then call Uncover
(v, w, £(v,w)) as defined below, delete the edge W), and finally, fori =
(v, w), ..., 0, we call Recovex(, w, i) as defined below.
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FiG. 2. Application of Lemma 19. The dashed lines show the transitive covering before the edge
deletion, which is the same on both figures. The solid lines show our recovery. The inner bubbles
represent level + 1 while the outer bubbles represent level

As in 2-edge connectivity, the basic goal of Uncover is to remove the cover informa-
tion stemming from the edge (w). However, since we are maintaining transitive
covering, itis not quite so obvious what to do. We could of course, remove all transi-
tive covering thaty, w) had been part of generating, but then we would not be able
to recover the correct cover information efficiently. Our key insight is expressed in
the lemma below.

LEMMA 19. Let(v,w) be a level i nontree edge covering a tree triple Xxyz
v---w. Consider G, j <i. Suppose s is a neighbor of y biconnected thence
toyandz. Then, {iv, w) is deletedafterwards s is biconnected to x or, possibly
to both.

ProoFr From Lemma 18f), we know that biconnectivity of neighbors gfis
the transitive closure over pairs’(z’) wherex'yZ is covered. Removing one pair
(X, 2) can either not change the transitive closure, or split it in two, with one part
containingx and the other containing [J

The lemma suggests, that when{) is deleted, we should store the neightmrs
mentioned. From before the deletion, these neighbors form tisg def) = c ; (2).
Generally, we use the sejf ; (x | 2) to store the set of neighbors yahat we know
are biconnected tm or z on level j, but that are not yet*-biconnected to either.
The application of the lemma is illustrated in Figure 2. We will be expanding

¢y, j+1(x) until either we get stuck witley ;. ,(X) = cj ;(x) andz & cj ;(x), or we
mcludezm cy. J+1(X) Inthe formercase we sej ; (z) =Cy (x | 2) U c; (2) and

cy.;(x12) == ¢. Inthe latter case, we sej ;(X) = cj ;(X | z) ucs J(x) ucy (2
andc* i(x]2) :=0. When ¢, w) is deleted, it is onIy trlplexyze v wthat are
affec ed in the above way. In particular, for ayly there can only be one affected
tree triplex’y’Z. If there is such a tripl&’y’'Z’, we say that it iguzzy coveredNe
can now describe the uncovering of a tree triple:

Uncover(xyz i). Wherexyzis a tree triplec*-biconnected on leval, if it is also
c*-biconnected on level 4+ 1, do nothing; otherwise, fof = i,...,0, set
¢y (x12) = cy  O)N(ey 1 () UC;,4(2)), € (X) == cf i ,4(X), andc] (2) :=
Cy.i+1(2). Finally, setcy ;(s) := ¢ ; 4(s) forall s € ¢} ; (x| 2)
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For the sake of recovering, we need a matching redefinition of our covering
procedure.

Cover(xyzi). Forj =i,...,0, we do as follows: If there is no fuzzy covered

triple x'yZ with cf ;(x"|Z) # #, we just unioncj ;(x) andcj ;(2). If there

is a fuzzy covered tripl’yZ andcj ;(x'|Z) # @, we divide into cases. If

neither ofx” andz’ are incj ;(x) or cj ;(2), we again just uniore} ;(x) and

cy.j(2). Otherwise, by symmetry, we may assume tjgt(x) containsx’. Since

c* (x | Z) # @, Cy.j (x) cannot also contaid. If Z € Cy.j (z) we unlonc (x)
J(z) andcy (x |z’) and setcj ;(x|2) = 0. OtherW|se we unloru:y J(x)

andc v.1 (D), and subtract them frorq;’ X' 2).

Before giving the final description of how to Uncover a nontree edge], recall
that (v, w) covers the triplesvvs"(v) andwvs'(v) where §, sV (v)) and (v, s'(w))
are tree edges. There are no other nontree edges that can cover a triple containing
the nontree edger(w). Hence, removing the covering wfvs"(v) corresponds to
removing the transitive covering of all tripl@sv-, thus, singlingv out from its set
in the partitioning of the neighbors of Since the deletion ofv( w) also stopsv
from being a neighbor of, we can simply removes from ¢ (-). Similarly, v is
removed froncy, (-).

Uncover(v, w,i). CallUncoverkyzi)forallxyzC v---w. Deletew fromcj (-)
andv from ¢y, (). Call 2e-Uncover(, w, i).

To complete the description of Delete, we need to define Recqwer{). Our
general assumption is that af-information is correct, except that we need to
resolve the setsj ;(x|z) with xyz € v---w. When Recovel(, w, i) is called,

we assume these sets are empty jfoe- i, and now we need to empty them
for j = i. The definition is rather subtle and we defer the explanation to the
subsequent proofs.

Recovel(v,w,i). We divide into two symmetric phases. Phase 1 goes as follows:

Let u step through the vertices of - - w towardsw, starting withu=v.
(1) if u # v, setu’ := s¥(u) and run
(*) While there is a leveli nontree edgeq,r) such thatu =
meefq, v, w) andc*(u'u---qr) > i, if legal, increase the level
of (g,r) toi + 1 and call Coved,r,i + 1); otherwise, just call
Coverg,r, i) and stop Phase 1.
(2) ifu ¢ {v,w}andc};(s’(u)|s"(u)) # 9,
Unionc ; (s'(u)) andcu i(sY(u)[s"(u)), and
setc, I(s"(u)lsW(u)) =.
(3) if us£w, setu :=s"(u)and run (*).
If Phase 1 was stopped in (*), we have a symmetric Phase 2 with the roles of

andw swapped.
As afirst step in proving correctness, we prove

LEMMA 20. For each value of pafter Step2), ¢
resolved.

(sV(u) | 8¥(u)) is correctly

’UI
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PROOF.  Since the two phases are symmetric, we may assume that we are in
Phase 1.

For each value ofi, we want to prove thad:j’i(s"(u) | s¥(u)) gets correctly
distributed betweer ;(s'(u)) andc;;(s"(u)). Given that Cover is correct, the
crltlcal point is Step (2) where we unlcqj (s¥(u)) andc;; (s'(u) | s¥(u)), setting

(s"(u) | 8¥(u)) := . This requwesthau;*J (s(u))is completed with no elements
Ieft in ¢ ;(s'(u) | s"(u)). Inductively, we prove correctness assuming correctness
for each’ previous value* of u.

If ;i (s'(u)) is not completed, it is because there is a lévebntree edgedy, r)
covering a triplexuzwith x € ¢;;(u) andz ¢ c ;(u’). Here, by symmetry, we
assume that is nearest ta, that is, thasd(u) = x ‘ands’ (u) = z.

Supposamnee(fq, v, w) # u, and setu* = meefq, v, w). Then €, r) covers
s¥(u*)u*---qgr. By induction,c}. ; (-) was correct after Step (2), and- - - qr has
been correctly covered all along as it does not contain a triple fromw. Thus,
c*(s¥(u*)u*-..qgr) > £(q,r) = i, and hence we should have found and incre-
mented the level ofg, r) in Step (3).

Suppose insteadee(q, v, w) = u. Sinces(u) € ¢ ; (s'(u)), c*(s'(u)usi(u)) >
i. Moreover,u---gr is covered byd, r) andu - - - qr does not contain any triples
fromv...-w, soc*(u---qr) > i. Thus,c*(s¥(uu---qr) > i, and henced,r)
should have been found and had its level increased in Step((1).

The remaining proof of correctness of Recover is quite similar to that for 2-edge
connectivity.

LEMMA 21. Recovelv, w, i) correctly resolves all sets;g(s’(u) | s"(u)) for
u=s%v)---s'(w).

PrRoOOF By Lemma 20 we are done for all valuesudfior which we have passed
Step (2). In particular, we are done if the phases are not stopped.

Now, suppose phase 1 is stopped. ugbe the last value afl considered, and
(s, r1) be the last edge considered. Then increasing the level of is illegal.
Hence phase 2 will also stop, for otherwise, it would end up illegally increasing the
level of (gy, r1). Letu, be the last value ai considered, and leti§, r») be the last
edge considered in phase 2.

Fork := 1, 2, from the illegality of increasing the level ofy ry), it follows
that the biconnected compone®y of gy in Gj1 U {(0k, r'k)} has> [n/2+1] + 1
vertices. However, we know that before the deletionwgff), C, andC, where
both part of a biconnected componéhtof G;, and this component had at most
[n/2'] vertices. Henc€, andC, overlap in at least two vertices, implying that they
are contained in the same biconnected compobeot G; ;1 U {(Q1, r1), (Q2, r2)}.
Since covering is assumed complete for levell edges irD, it follows that after
our calls Coverg, ry, i) and Covergy, r», i), all covering ofD is updated.

To complete the proof, we need to show for each u; - - - uy, either (1) that
s'(wus"(u) € D in which case correct covering is inherited frdiy or (2) that
we have passed Step (2) fiorin which case we apply Lemma 20.

First, considemu betweenu; and u,. Both u; and u, are in the biconnected
componenD. Hence, by Lemma 18, the triples’(u)us” isin D, so (1) applies.

Next, considem;. If Step (2) has been passed for, (2) applies; otherwise,
we were stopped in Step (1), sb(ui1) € ¢ ;(s'(u1)), but then,s'(uy) is in the
biconnected componeil.
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Now, if uy # up, s"(u;)) € v---w < D, sos’(uj)u;8¥(u;) € D and (1)
applies. Ifu; = u, and Phase 2 was stopped after Step (2), (2) applies te
u,. Otherwise, as above, we g&t(u,) € D; hence, thas'(u;)u;s%(up) C D,
so (1) applies. [

Finally, we need to argue that Recover also restores the correct covering of edges
as in 2-edge connectivity.

LEMMA 22. Recover(v,w,i) correctly covers the edges on-vw as in
2-edge connectivity.

ProOOF. Inductively, when we start Recoverfw, i), as in 2-edge connec-
tivity, we assume that all edges covered on levélare correctly covered, and
clearly this is maintained if we increment the level of a ldvedge ¢, r) and call
Cover@,r,i + 1).

Our potential problemis atree edge v - - - w covered by a levaélnontree edge
(q,r).Letq’ = mee(q, v, w)andr’ = meefr, v, w). By symmetry, we may assume
thatq' is closer tov thanr’. Then @, r) coverss¥(q)q’ - - - gr, so if Phase 1 got tgf
and finished Step (3), we should have fougdr() and incremented its level. Thus
g’ ---r’ Cu;---uywhereu; are as defined in the proof of Lemma 21. In particular,
e € Uz - - - Up. Thuseis in the biconnected componddiof G 1 U{(qy, r1), (02, r2)}
from Lemma 21.

Generally, we have that a tree edge covered if and only if itis in a biconnected
component with some other edge. If this applie&tq,, eis covered on leval+ 1,
hence correctly covered by induction. Otherwisis,not covered on leveH- 1, but
eis in a biconnected component with other edge®irso there is an edge(y)
in D coveringe. Since K, y) is not inG;j_1, (X, y) is either @, r1) or (g1, r1). In
either case, we know that Cover(y, i) has been called.[]

7.2. IMPLEMENTATION. The main difference between implementing biconnec-
tivity and 2-edge connectivity is that we need to maintain the biconnectivity of
the neighbors of all vertices efficiently. For each veryexve will maintaincy (-)
as a list with levels on the links between succeeding elements such*{kgf)
is the minimum level of a link betweexandz in cj (-). Then,cj;(x) is a con-
nected segment af, (-). Now, if ¢} ; ,(x) = cj 1(z) we can unlorc j(x)and
¢y, (2) without affectingcy ; _;(x), S|mply bymovmgc; (2 to ¢ ;(x) on level |
as foIIows First, weextract ¢ ;(2), replacing it by the m|n|maI welght link to its
nelghbors Since both of these links are of Welght at mest, this does not affect
the minimum weight between elements outsije(z). Second wensert ¢ ; (2)
aftercy ; (x) with link weight j in between. The link afte; ;(z) becomes the link
we had aftecy ;(x). Note that ifx € cj (u"|u”) and we move: 0. () to ¢ (U),
then, implicitly, we delete . (x) fromc (u’ | u”), as required.

We represent the nelghbor st () usmg a standard balanced binary tree repre-
sentation of lists admitting split and join [Tarjan 1983, Sect. 4]. We can then easily
determinec*(xy3, identify c ;(x), or move a segment ;(z), in O(logn) time.
Also, in O(logn) time, we can mark a segmetit; (u" | u”) as fuzzy, implying for
X € Cf (u |u”) thatc! (x) =C. JJrl(x)

Init Edge(v, w). Llnk wtocy (-) onlevel-1andv tocy (-) onlevel—-1.
FreeEdgdv, w). Extractw fromcj (-) andv fromcj, (-).
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Cover(xyzi) Wherexyzis a tree triple. Foj = 0, ..., i, we do as follows. If
there is no fuzzy covered tripkeyZ with cy (x | Z) ;ﬁ (ZJ we just Mmovecy, ; (x)
tocy ;(2) on levelj. If there is a fuzzy covered tripbe’yZ andcj ; (X’ |z’) ;é @,
we divide into cases. By symmetry, we may assume thej} j{x) containsx’
or Z, it containsx’. If ' € cj ;(2), we movec] ;(x'| ') andcy ;(Z) to cj ;(X')
onlevelj,and sety ; (x | Z) := @. Otherwise, |fx/ €Cy | (x) we movec* (z) to

¢y j(x) onlevelj. Ifc v.j (@ wasincy ;(X'| Z), itis nowdeleted fronc; ’J(x | Z).
Finally, if X" & c{ ; (x) andz ¢ cj (2), we just movecy ;(X) to cj ;(2).

Uncover(xyz i). Wherec*(xyd > i, if ¢*(xyd > i, do nothing otherwise, for
j=1,...,0, setc] ;(x]2) := ¢ ;(X). Then movecy ;. ,(x) andc] ;,,(2) to
the end of nelghbor listy () on Ievel—l A note is made tha¢y2|s the fuzzy
covered triple aroung.

7.3. BCONNECTIVITY BY TOPTREES  As for 2-edge connectivity, the algorithm
maintains the spanning forest in a top tree data structure. For each €yster
maintain coveg = c*(x(C)).

Biconnectedv, w). SetC := Exposey, w). Return (covet > 0).

Also, cover-edgg, cove@, coveg, and cover-ed@are defined analogously to
in 2-edge connectivity. The cover edges cover-edaed cover-edgeare exactly
the same, while covgrand coveg, like coveg, now refer to covering of triples
instead of edges. As for 2-edge connectivity, the information in nonpath clusters
will never be missing any lazy information.

A main new idea is that we overrule the top trees by using the neighbor lists
cy..() to propagate information from minimal nonpath clusters to path clusters. Let
v andw be tree neighbors. We say thatis anoffspringof v if there is a nonpath
cluster containingg andw with v the boundary node. We then IE{v, w) denote
the minimal such cluster. Note that the offspring relation is antisymmetric. Also,
note thatv can have at most two tree neighbors that are not its offspring. We call
the clusterC(v, w) above anoffspring cluster ThenC(v, w) is either the edge
(v,w) if w is a leaf, or the merge of a path cluster and a nonpath cluster as in
Figure 1(3). We are going to use the neighbor lists to propagate counters directly
from the offspring clusters to the minimal path clusters containing them, bypassing
all nonpath clusters in between.

We are now ready for the rather delicate definitions of the cousiessand
incident for path clusters and offspring clusters.

—Let j andk be levels, and le€ be a path cluster withC = {v, w}. Letsize y j «
denote the number of internal verticgof C such that eitheg € 7 (C) and
c*(v---q) > j or there exist a triple’uu” < 7 (C) with u = meefv, w, q) and
(uyx)eu--- qsuchthat*(v -u) > j,c*(u---q) = kandeithec*(u'ux) > k
orc*(u'uu’) > jandx € ¢ (u")Uc] (U’ |u”). Letincideng v, j x be the number
of (directed) nontree edgeq (r) with the pathv - - - qr satlsfylng the conditions
from above for the pati - - - q.

—Similarly, leti be a level and leC = C(v,w) be an offspring cluster. Let
size- v be the number of internal verticgsof C with w € v---q such that
c*(vw---q) > i, and letinciderg, ; be the number of (directed) nontree edges
(g, r) whereq is an internal vertex o€ andc*(vw---qr) > i.
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Consider an edgev(w). If (v, w) is a path cluster, it has no internal vertices,
so all of the above size- and incident-counters are zero. Howewers ithe only
boundary vertex ofy, w), (v, w) is an offspring cluster with sizgy) v = 1 for
alli. Then mmderﬁ, w).v.i IS the number of nontree neighborsgj; (v). Note that
sincew is a leaf in the underlylng forest, any edge, (1) coversvwg, socy,;(v)
contains v, q) if £(w, q) > i.

As for 2-edge connectivity we note that when a nontree edge gets inserted or
deleted, or its level changes, we always expose its end-points so that they are not
internal to any clusters. This has the convenient effect that we do not affect any of
the incident-counters at the clusters until we start covering or uncovering the path
between the end-points.

To get information from offspring clusters to path clusters, and vice versa, we
need the following functions:

Sizgv, W, i). WhereW is a set of neighbors of, returns) ", .\, (Siz&, cv,w),i if
w offspring ofv, 0 otherwise).

Incident(v, W, i). WhereW is a set of neighbors of, returns) (1 if w
nontree neighbor of, Incident c.w),i if w offspring ofv, and 0, otherwise).

NeighborX(u, u’,i). WhereX € {Size, Incideng, returnsX(u, c;j; (u), i)

NeighborX(u, u"|u”,i). Where X € {Size, Incident, returns X(u, c;(u") U
iU U e (uu’),i).

NeighborFind(u, U’,i). Findsz € c; ;(u’) such thatis either a nontree neighbor
of uoran offsprlng with incider,z).ui > O.

For each offspringv of v, the O(log n) counters ofZ(v, w) are stored witlw in
the neighbor list; (-) of v. Accumulating these counters in the binary tree repre-
sentation of; (-), we can easily support each of the above function® flog n)
time. However, storindd(logn) counters with each binary tree node |mpI|es that
list operations such as moving a segmen(z) of ¢j (-) now takesO(log? n) in-
stead of jusO(logn) time. The remaining operatlons are implemented analogously
to in 2-edge connectivity.

Cover(C, i, e). First,wedoasin2-edge connectivitydfhas path childre and
B and{u} = AN 3B ¢ 9C andu’uu” is the triple withu’ € A andu” € B,
then we callCover(u'uu’, i).

Uncover(C,i). First, we do as in 2-edge connectivity.@f has path childrer\
andB and{u} = dANJdB ¢ aC andu’uu” is the triple withu" € Aandu” € B,
then we calUncover(u’'uu’, i).

C:=Merge(A, B). SupposedC = {a} anda < 3 A (Figure 1(3)—(4)). TherlC
is a nonpath cluster. IfA is a nonpath cluster (Figure 1(4)§; is not an
offspring cluster, so we are done. Otherwise (Figure 1(3)), tetuj be
the tree edge such that e 7(A), and {u} = 9A N 9B. Then for X €
{size, incident and k:=—1,...,fmax, Xc.ak := Xaakk If covera <Kk,
Xc.ak := Xaakk + NeighboiX(u, U, k) if covera > k. Leta’ be the successor
of ain 7(A). ThenC = C(a, a’), so we have to update the 2 counters
associated witl' in a's neighbor listc; (-).

SupposedC = {a,b}, a € A, andb € 9B (Figure 1(1)—(2)). covey,
cover-edgg, coveg, coveg and cover-edge are maintained as in 2-edge
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connectivity. FoiX € {size, incidentandj, k := —1, ..., £maxCOmputeXc a j k
as follows Kcp,jk is symmetric): If A is a nonpath cluster (Figure 1(2)),
set Xc,a jk := Xpa jk- Otherwise, if B is a nonpath cluster (Figure 1(2)),
setXc.ajk := Xaajk- Finally, if both AandB are path clusters (Figure 1(1)),
let v'uu” be the triple such that e =(A), {u} = 9A N 9B, and
u” € m(B). ThenXcajk := Xaajk if covera < j, Xcajk := Xaajk+
NeighboiX(u, U’, k) if covera > j A c*(U'uu”) < j, and finally Xc a jk :=
Xaa jk + NeighboX(u, u"|u”, k) + Xp y,j k if covera > j A c*(Uu'uu’) > j.

Recovelv,w,i). We divide into two symmetric phases. Phase 1 goes as follows:

SetC := Exposey, w).
Setu := v and letu’ be the successor afonu - - - w.
(*) While Neighborincidentf, u’, i) > 0,
—Set @, r) := VertexFind(, i, u’).
—D := Exposeq{,r).
—Let(q,q) and ¢’,r) be the end edges aq- - - r
—If sizep g, —1,i+1 + 2 + NeighborSize§, q', i + 1) + NeighborSize
(r,r',i +1) > n/2+%,
—Cover(, i, (q,r)).
—Stop the phase.

—Else
—Setl(q, r) ;=i + 1, updating the corresponding incident-counters
incg (-) andcy ().
—Movecg ;4 (r)tocg;,1(q) andcy;, (@) tocy; 1 (r") onleveli +1.
—CoverD,i +1,(q,r)).
—C := Exposey, w).

u := FindBranchy, C, i).
While u #nil,
Let u’ be the predecessor, and l&tbe the successor afin
Run (*) again with the new values afandu’.
Movecj ;(x|2) tocy ;(z) and sety ;(x|2) ;= ¥.
Run (*) again withu” in place ofu’.
u := FindBranchy, C, i).

If Phase 1 was stopped in (*), we have a symmetric Phase 2 with the rotes of
andw interchanged.

FindBranch(a, C,i). Ifincidentc o —1i = 0, returnnil, else call Clear). If C
has only one path child, then return FindBranch( A, i). Otherwise, letA and
B be the children ofC with A nearest ta and letu’'uu” be the triple such that
u e w(A) andu” € n(B) andu € dA N dB. If incidenty 5 —1; > O, then
return FindBranchg, A, i). Otherwise, if Neighborincideni(u’ |u”,i) > O,
then returru else return FindBranch( B, i).
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VertexFind(u,i,u’). Letz:= NeighborFindg, u’,i). If zis a nontree neighbor,
return {1, z). Otherwise, ifC(u, 2) is the edgel, z), return g, r) wherer is a
nontree neighbor afin c;; (u). OtherwiseC(u, z) has two childrerA andB with
ue A AN B = {b}. Ifincidenta ;i > O, returnPathFind(u, A, i). Otherwise,
returnVertexFind(b, i, b’) wherely is the predecessor bfinu- - - b.

PathFind(a, C,i). Call CleanC). If C has only one path childA, return
PathFind(a, A, i). Otherwise, letA be the path child nearest swand B be
the other path child. If incident, —1; > 0, then returrPathFind(a, A, i). Else,
let b be the boundary vertex nearestaan B andb’ be the predecessor bf
ona---b. If Neighborincident(b, b/, i) > 0, returnVertexFind(b, i, b"), else
returnPathFind(b, B, i).

THEOREM 23. There exists a deterministic fully dynamic algorithm for main-
taining biconnectivity in a graphusing Qlog® n) amortized time per operation.

PROOF Relative to 2-edge connectivity, the essential new cost is when we
cover a triple. This move®(logn) segments in the neighbor list of the center of
the triple. Each move affec(logn) binary tree nodes in the representation of the
neighbor list, and each of these tree nodes@flegn) counters associated with
it, so the cost of covering a triple ®(log® n). This in turns means that Clea®)
and SplitC) now takesO(log® n) time, as opposed to th@(log? n) time in 2-edge
connectivity. As a result, our total operation cost is increased by a f&xiogn)
to O(log®n). [J

Our fully dynamic biconnectivity algorithm us&(m + nlog? n) space. As for
2-edge connectivity, we can improve the spac®ion + nlogn) and the query
time toO(logn). It requires, however, that we use biased search trees [Sleator and
Tarjan 1985] for the neighbor list§ (-), giving the at most two nonoffspring tree
neighbors maximal bias, and giving offspring tree neighbors bias proportional to the
size oftheir offspring clusters, thatis, an offspring neighkgets bias sizgy w),v,o-.
Thorup’s [2000] improvement by a fact@(logn/loglogn) also works here. In
fact, it seems that the techniques from Thorup [2000] can save a further factor
O(logn) by providing a kind of biased deletion for the covering and uncovering
of triples. This would then lead to an amortized update tim©@bg®log logn)
with a query time ofO(logn) and a space bound @(m + nlognloglogn), as
for 2-edge connectivity. Details of this will be presented in the journal version of
Thorup [2000].

Finally, we note that it is not difficult to augment our biconnectivity algorithm
to provide articulation points using the same principles as was used to augment the
2-edge connectivity to provide bridges.

8. Concluding Remarks

Deterministic fully dynamic algorithms with polylogarithmeamortizedopera-

tion costs have been presented for connectivity, minimum spanning forest, 2-edge,
and biconnectivity. It remains a major open problem such feasible bounds can be
achieved in thavorst-casewhere currently, the best known @&(,/n) per update
[Eppstein et al. 1997; Frederickson 1985]. Another, major challenge is to find good
algorithms for directed graphs. Recently, it has been settled that one can maintain
the transitive closure of a digraph @(n?) time per operation [Demetrescu and
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Italiano 2000; King 1999]. This is optimal in the sense that one update can make
Q(n?) changes to the transitive closure. However, if the problem is just to maintain
reachability between to fixed verticesandt, no solution better than the static

is known.
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