
CS174 Lecture 10 John Canny

Chernoff Bounds

Chernoff bounds are another kind of tail bound. Like Markoff and Chebyshev, they bound the total
amount of probability of some random variableY that is in the “tail”, i.e. far from the mean.

Recall that Markov bounds apply to any non-negative random variableY and have the form:

Pr[Y ≥ t] ≤ Y

t

whereY = E[Y ]. Markov bounds don’t depend on any knowledge of the distribution ofY .
Chebyshev bounds use knowledge of the standard deviation to give a tighter bound. The Chebyshev
bound for a random variableX with standard deviationσ is:

Pr[|X − X| ≥ tσ] ≤ 1

t2

But we already saw that some random variables (e.g. the number of balls in a bin) fall off
exponentially with distance from the mean. So Markov and Chebyshev are very poor bounds for
those kinds of random variables.

The Chernoff bound applies to a class of random variables and does give exponential fall-off of
probability with distance from the mean. The critical condition that’s needed for a Chernoff bound
is that the random variable be a sum ofindependent indicator random variables. Since that’s true
for balls in bins, Chernoff bounds apply.

Bernoulli Trials and the Binomial Distribution

The first kind of random variable that Chernoff bounds work for is a random variable that is a
sum of indicator variables with the same distribution (Bernoulli trials). That is, ifXi is a random
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variable withPr[Xi = 1] = p, Pr[Xi = 0] = (1−p), and theXi are all independent. Tossing a coin
is a Bernoulli trial. So is the event that a randomly tossed ball falls into one of n bins(p = 1/n). If

X =
n∑

i=1

Xi

is a sum of Bernoulli trials, thenX has a Binomial distribution. We derived this already for coins
and balls into bins. It is:

Pr[X = k] =

(
n

k

)
pk(1 − p)n−k

the Chernoff bounds approximate a generalization of the binomial distribution.

Poisson Trials

There is a slightly more general distribution that we can derive Chernoff bounds for. If instead
of a fixed probability we allow everyXi to have a different probability,Pr[Xi = 1] = pi, and
Pr[Xi = 0] = (1 − pi), then these event are called Poisson trials. A Poisson trial by itself is really
just a Bernoulli trial. But when you have a lot of them together with different probabilities, they
are called Poisson trials. But it is very important that theXi must still beindependent.

Chernoff Bounds (lower tail)

Let X1, X2, . . . , Xn be independent Poisson trials withPr[Xi = 1] = pi. Then ifX is the sum of
theXi and ifµ is E[X], for anyδ ∈ (0, 1]:

Pr[X < (1 − δ)µ] <

(
e−δ

(1 − δ)(1−δ)

)µ

This bound is quite good, but can be clumsy to compute. We can simplify it to a weaker bound
which is:

Pr[X < (1 − δ)µ] < exp(−µδ2/2)

the simplified bound makes it clear that the probability decreases exponentially with distanceδ
from the mean.

Example In n tosses of a fair coin, what’s the probability ofm < n/2 heads? LetX be the number
of heads, thenµ = n/2 andδ = (1− 2m/n) is the relative distance ofm from µ. The bound gives
us a probability of fewer thanm heads which is

Pr[X < m] < exp(−(n/4)(1 − 2m/n)2)

So if we toss the coin 100 times and ask for less than 10 heads, the probability is less than
exp(−16) = 1.12 × 10−7.
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Proof of the Chernoff bound First write the inequality as an inequality in exponents, multiplied
by t > 0:

Pr[X < (1 − δ)µ] = Pr[exp(−tX) > exp(−t(1 − δ)µ)]

Its not clear yet why we introducedt, but at least you can verify that the equation above is correct
for positivet. We will need to fixt later to give us the tightest possible bound. Now we can apply
the Markov inequality to the RHS above:

Pr[X < (1 − δ)µ] <
E[exp(−tX)]

exp(−t(1 − δ)µ)]

Notice thatexp(−tX) is a product of independent random variablesexp(−tXi). This is the
heart of the Chernoff bound. The expected value ofX is the product of the expected values
E[exp(−tXi)]. So we have that

Pr[X < (1 − δ)µ] <

∏n
i=1 E[exp(−tXi)]

exp(−t(1 − δ)µ)]

Now E[exp(−tXi)] is given by

E[exp(−tXi)] = pie
−t + (1 − pi) = 1 − pi(1 − e−t)

We would like to express this as the exponential of something, so that we can simplify the product
expression it appears in. As we did in an earlier lecture, we use the fact that1−x < exp(−x) with
x = pi(1 − e−t), we get

E[exp(−tXi)] < exp(pi(e
−t − 1))

and from there we can simplify:

n∏
i=1

E[exp(−tXi)] <

n∏
i=1

exp(pi(e
−t − 1)) = exp

(
n∑

i=1

pi(e
−t − 1)

)
= exp(µ(e−t − 1))

becauseµ =
∑

pi, ande−t is a constant in the sum. Substituting back into the overall bound gives:

Pr[X < (1 − δ)µ] <
exp(µ(e−t − 1))

exp(−t(1 − δ)µ)]
= exp(µ(e−t + t − tδ − 1))

Now its time to chooset to make the bound as tight as possible. That means minimizing the RHS
wrt t. Taking the derivative of(e−t + t − tδ − 1) and setting it to zero gives:

−e−t + 1 − δ = 0

and solving gives ust = ln(1/(1 − δ)). Making that substitution gives:

Pr[X < (1 − δ)µ] < exp(µ((1 − δ) + (1 − δ) ln(1/(1 − δ)) − 1))

and after cancelling the 1’s and applying the exponential, we get:

Pr[X < (1 − δ)µ] <

(
e−δ

(1 − δ)(1−δ)

)µ
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which is the bound we are looking for.

To get the simpler form of the bound, we need to get rid of the clumsy term(1 − δ)(1−δ). First
take the log to give(1 − δ) ln(1 − δ). Now the Taylor expansion of natural log is

ln(1 − δ) = −δ − δ2/2 − δ3/3 − δ4/4 · · ·

multiplying by (1 − δ) gives:

(1 − δ) ln(1 − δ) = −δ + δ2/2 + all positive terms> −δ + δ2/2

and we can apply exponentiation to give:

(1 − δ)(1−δ) > exp(−δ + δ2/2)

We can substitute this inequality into the earlier bound to get:

Pr[X < (1 − δ)µ] <

(
e−δ

(1 − δ)(1−δ)

)µ

<

(
exp(−δ)

exp(−δ + δ2/2)

)µ

= exp(−µδ2/2)

Chernoff Bounds (upper tail)

Let X1, X2, . . . , Xn be independent Poisson trials withPr[Xi = 1] = pi. Then ifX is the sum of
theXi and ifµ is E[X], for anyδ > 0:

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ

Proof The proof is almost identical to the proof for the lower tail bound. Start by introducing at
parameter:

Pr[X > (1 + δ)µ] = Pr[exp(tX) > exp(t(1 + δ)µ)]

compute the Markov bound, convert the product of expected values to a sum, and then solve fort
to make the bound as tight as possible. QED

The upper-tail bound can be simplified. Supposeδ > 2e − 1, then

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ

<

(
eδ

(2e)(1+δ)

)µ

<

(
eδ

(2e)δ

)µ

= 2−δµ

which shows once again an exponential drop-off in probability withδ.

By a more complicated argument, which we wont give here, you can show that forδ < 2e− 1,
the Chernoff bound simplifies to:

Pr[X > (1 + δ)µ] < exp(−µδ2/4)
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