
Efficient Hashing with Lookups in two Memory Accesses

R i n a Panigrahy *

October 11, 2004

A b s t r a c t

The s tudy of hashing is closely related to the analysis
of balls and bins. Azar et. al. [1] showed that instead
of using a single hash function if we randomly hash a
ball into two bins and place it in the smaller of the
two, then this dramatical ly lowers the max imum load
on bins. This leads to the concept of two-way hashing
where the largest bucket contains O(log log n) balls with
high probability. The hash look up will now search in
both the buckets an i tem hashes to. Since an i tem may
be placed in one of two buckets, we could potentially
move an item after it has been initially placed to reduce
max imum load. Using this fact, we present a simple,
practical hashing scheme that maintains a max imum
load of 2, with high probability, while achieving high
memory utilization. In fact, with n buckets, even if the
space for two items are pre-allocated per bucket, as may
be desirable in hardware implementations, more than n
items can be stored giving a high memory utilization.
Assuming truly random hash functions, we prove the
following properties for our hashing scheme.

• Each lookup takes two random memory accesses,
and reads at most two items per access.

• Each insert takes O(log n) t ime and up to log log n +
O(1) moves, with high probability, and constant
t ime in expectation.

• Maintains 83.75% memory utilization, without re-
quiring dynamic allocation during inserts.

We also analyze the trade-off between the number
of moves performed during inserts and the max imum
load on a bucket. By performing at most h moves, we
can maintain a maximum load of O(hlogl((~og~og:n/h)). So,
even by performing one move, we achieve a bet ter bound
than by performing no moves at all.

1 I n t r o d u c t i o n

The study of hashing is closely related to the analysis
of balls and bin. One of the classical results in this area

-"-~-Ci~o Systems, San Jose, CA 95134.
r:i_napOcisco, com.

E-mail:

is that , asymptotically, if n balls are thrown into n bins
independently and randomly then the largest bin has
(1 + o(1)) In n~ In Inn balls, with high probability. Azar
et. al. [1] showed that instead of using a single hash
function, if we randomly hash a ball into two bins and
place it in the smaller of the two, then this dramatical ly
lowers the max imum load on bins. This leads to the
concept of two-way hash functions where the largest
bucket contains O(loglogn) balls. The hash look up
will now search in both the buckets an i tem hashes
to. So dramatic is this improvement that it can be
used in practice to efficiently implement hash lookups
in packet routing hardware [3]. The two hash lookups
can be parallelized by placing two different hash tables
in separate memory components. However, to simplify
our presentation and analysis, we will assume tha t only
one hash table is used. We will also assume that the
hash functions used are truly random.

Note tha t since an i tem may be placed in one of two
buckets, we could potentially move an i tem after it has
been initially placed to reduce max imum load. While it
was known that if all the random choices are given in
advance, balls could be assigned to bins with a maxi-
mum load of 2 with high probabil i ty [6], we show that
this can be achieved on line while support ing hash up
date operations. In fact, even more than n, up to 1.67n,
items can be stored in n buckets, with a max imum load
of two items, by performing at most log logn + O(1)
moves during inserts, with high probability. Even if
the space for two items are pre-allocated per bucket,
as desirable in hardware implementat ions to avoid dy-
namic allocation, this represents only a 16.25% wastage
of space - over 83.75% utilization. Memory utilization
is a crucial issue in several hash implementations, es-
pecially hardware implementat ions where a large num-
ber of memory components consume critical resources
of board space, ASIC pin count and power. Our algo-
r i thm requires a bfs (breadth first search) exploring at
most O(log n) nodes with high probabil i ty and constant
in expectation. Alternatively, to avoid a bfs, we show
that one could simply perform a random walk of length
O(log n) to maintain a max imum load of two provided
m < 0.65n; for larger m this would give a constant load

830

as long as rn = O(n) .
We also analyze the trade-off between the mmlber of

moves performed during inserts and the maximum load
on a bucket. A solution requiring fewer moves may be
more attractive in practice as moves may be expensive;
also it may be desirable to avoid a bfs traversal that
may be infeasible in hardware implementations. By
performing at most h moves during inserts, we can
maintain a maximum load of O(lo~lo~n ~, h log(log log n/h))" S o
even by performing one move, we achieve a better
bound than by performing no moves at all. This result
holds even if the hash functions used are not truly
random but are O(log n)-way independent. Setting h =
O(loglogn) implies that we can maintain a constant
maximum bucket size even if O(log n)-way independent
hash functions are used. Several recent works [19] [12]
demonstrate how such functions can be evaluated in
constant time and implemented efficiently without using
much storage.

This idea of moving items has been used earlier in
cuckoo hashing [20[, however, they allow only one item
per bucket. With two hash tables this requires 100%
memory overhead. They also show that the amortized
insert time with cuckoo hashing is a constant. Fotakis
et al [16] generalized the method to d-ary hashing, using
d hash tables, and truly random hash functions, but still
allowing only one item per bucket. They showed that
with e memory overhead, one can support hash lookups
in O(ln l/e) probes and constant amortized insert time
assuming the hash functions used are truly random.
Our use of bN to find a bucket with empty space is
similar to theirs. They also provide an alternate scheme
that performs lookups in O(ln 2 l /e) probes while using
polynomial hash functions of degree O(ln l /e) that can
be evaluated in constant time.

However, in practice, memory operations requiring
more random accesses is more expensive than reading
the stone amount of memory in few accesses and larger
bursts. For most forms of memory such as DRAMs
and disks, the latency of the initial random access is
much higher than that of fetching data from subsequent
locations. Also, in hardware implementations, probing
a large though constant number of tables will require as
many memory components to be accessed efficiently in
parallel. Our method involves two memory accesses and
achieves a 83.75% memory utilization. Note that this
utilization is what can be provably achieved and is not
tight; although we can show an upper bound of 93% for
our algorithm. At the same time, we should point out
that our stated memory utilization is proved assuming
that the hash flmctions used are truly random.

Another recent closely related but as yet unpub-
lished work [13] studies the same algorithm as ours but

for larger bucket sizes. They show that with buck-
ets of size O(1/e), and two hash tables, a dictionary
data structure can be maintained with e fraction space
overhead. Further, they show that for buckets of size
more than about 90/e, inserts can be performed in con-
slant expected time. Other related work includes the
first static dictionary data structure with constant look
up time by Fredman, Komlos and Szemeredi [15] that
was generalized to a dynamic data structure by Diet-
zfelbinger et al. in [8] and [10]. In practice, however,
these algorithms are more complex to implement than
cuckoo hashing. Extensive work has been done in the
area of parallel balls and bins [2] and the related study
of algorithms to enmlate shared memory machines (as
for example, PRAMs) on distributed memory machines
(DMIVis) [11] [5] [18] [22]. This setting involves a paral-
lel game of placing balls in bins (the so-called collision
game) where all n balls participate in rounds of parallel
attempts to assign balls to bins. In each round, you test
both locations of every ball that has not been placed yet.
If a ball has a location tested by at most some constant
number of other balls, you place it. It has been shown
in that loglogn + O(1) rounds indeed suffice to place
all n balls, with high probability [11] [5]. This however
does not imply our result that loglogn + O(1) moves are
sufficient to maintain maximum load of 2 because of the
different setting.

2 O v e r v i e w of T e c h n i q u e s

Viewing buckets as bins and items as balls, we can look
at the hashing process as if m balls are being assigned
to n bins. For each ball two bins are chosen at random.
If the bins are imagined to be the vertices of a graph,
the two bins for a ball can be represented by an edge.
This gives us a random graph G on n vertices containing
m edges. By making this graph directed, we could use
the direction of an edge to indicate the choice of the bin
among the two for placing the ball. The direction of
each edge is chosen online by a certain procedure. The
load of a vertex (bucket) is equal to its in-degree. For
each edge (item) insertion, the two-way hash algorithm
directs the edge towards the vertex with the lower in-
degree. During the hash process, say U is one of the
vertices a ball gets hashed to. Observe that if V U is a
directed edge, and if the load on V is significantly lower,
we could perform a move from U to V, thus freeing up a
position in U. Essentially, in terms of load, the new ball
could be added to either U or V, whichever has a lower
load. This principle could be generalized to the case
where there is a directed path from V to U, and would
result in performing moves and ipping the directions
along all tile edges on the path. If there is a directed
sub-tree rooted at U, with all edges leading to the root,

831

we could choose the least loaded vertex in this tree to
incur the load of the new ball. With this understanding,
we will say that W is a child of X if X W is a directed
edge. So, our hash insert algorithm looks as follows.

• Compute the two bins U1 and U2 that the new item
to be inserted hashes to.

• Explore vertices that can be reached from U1 or U2
by traversing along directed edges in the reverse
direction.

• Among such vertices, find one, V, with low load
that can be reached say from Us.

• Add the new item to Us and perform moves along
the path fi'om U1 to V so that only the load on V
increases by one.

Let s = 2 m / n denote the average degree of the
undirected random graph G. Note that the same graph
G can be viewed as a directed or an undirected graph.
Throughout the paper G refers to the undirected version
unless stated otherwise or clear to be so from the
context. Throughout the paper we will assume that
s is a constant. It turns out that the success of our
algorithm in maintaining low maximum load depends on
the absence of dense subgraphs in this random graph.
We show that such dense subgraphs are absent when
s < 3.35, giving an algorithm that works with bucket
size at most 2 and requiring at most loglogn + O(1)
moves for inserts with high probability (section 3).
Note that the bound of 3.35 for s may not tight but
is provably no more than 3.72. We then analyze the
trade off between number of moves during inserts and
maximum bucket size using the technique of witness
trees [5] [18] [2], making significant adaptations to our
problem (section 4).

3 C o n s t a n t M a x i m u m B u c k e t S ize

In this section we show that for s < 3.35 by performing
at most log log n + O(1) moves, we can ensure that with
high probability no bucket gets more than 2 items.

For an insert, we search backwards from a given
node in bfs order, traversing directed edges in reverse
direction, looking for a node with load at most one.
To simplify the analysis, we assume that during the
backward search, the algorithm visits only 2 children for
each node even if more may be present. We will show
that by searching to a depth of loglogn + O(1), with
high probability, we find a node with load at most one.
First, we show that if the backward search is allowed to
proceed to unlimited depth, the success of the algorithm
is related to a certain property of the random graph G.

LEMMA 3.1. If the backward search during inserts is
allowed to p'lvceed to any depth, the above algorithm
succeeds in inserting all m items while maintaining a
maxirr~,,,m load of 2 'if and only 'if the graph G does
not have a subgraph with density greater than 2. Here
density is the ratio of number of edges to vertices in the
subgraph.

Proof. Clearly, if there is such a subgraph, it is impos-
sible to orient the edges so that the in-degree on every
vertex in the subgraph is at most 2. So it is not possi-
ble to have inserted all elements and still have a load at
most 2 on every vertex.

Conversely, if an insert does not succeed, it means
the backward search does not find a node of load less
than 2. Since the search was not limited to a bounded
depth, it must have got stuck in a set of nodes all with
load at least two and leading to each other by traversing
edges in reverse direction. Then this set of nodes is a
subgraph of density at least two.

The existence of dense subgraphs in random graphs
displays a critical point behavior; that is, there is a sharp
threshold such that ahnost all random graphs with edge-
density larger than the threshold value have such a
subgraph and ahnost all with edge-density less than the
threshold value have none. This is because the existence
of a dense subgraph is a monotone property, and all
such properties were shown to display a sharp threshold
behavior by Friedgut and Kalai [14]. A closely related
property, the existence of a k-core in random graphs, has
been studied extensively and the threshold values have
been pinned down exactly. A k-core is a maximal non-
empty subgraph where every node has degree at least k.
Pittel et al [21] showed that for the existence of a 3-core
the critical value is about 3.35. Note that existence of a
subgraph with density greater than 2 implies existence
of a 3-core. This is because by iteratively deleting nodes
with degree at most 2 we must be left with a non-empty
3-core as the number of deleted edges is at most than
twice the number of deleted vertices, less than the total
number of edges. This means that the threshold value
for the existence of a 2-dense subgraph is at least 3.35.
We will show that it lies between 3.35 and 3.71. Further,
we will show that for s < 3.35, not only does an inserts
succeed with high probability but also takes less than
log log n + O(1) moves. It is interesting that this value
of s coincides with the threshold value for existence of a
k-core, but not surprising as we use methods similar to
that for k-core in lower bounding the threshold value.
Although this value was also shown to be tight for the
existence of 3-core by Pittel et al [21], it is unlikely to
be so for the existence of 2-dense subgraph.

Since our strategy is to search for a node with load

3

832

at most one, first we show that it is unlikely to get stuck
in a situation where o(n) nodes have been explored,
each with load at least 2, and they all lead to one
another with no new nodes to visit. This follows fi'om
the following lemma as if we do get stuck, we have found
an induced subgraph where every node has in-degree at
least two.

LEMMA 3.2. With high probability, 1 - O(1/n 2) there
does not exist an induced subgraph of size o(n) in G
where every node has in-degree at least 2. This implies
that the backward search cannot get stuck with high
probability if it is allowed to proceed to any depth.

Proof. If there is such a subgraph of x nodes, it must
have at least 2x edges. We will show that the probability
of such an event is negligible. Number of ways of
choosing x vertices and 2x edges from the m edges is

(~n/2,~ Probability of a given edge falling in this (;) , 2~ , '

subgraph is _< ~ So the probability of finding such

a subgraph of x nodes is

< n sn/2 (x 2)2x

- x 2x n 2

< (e~)~(es~/2~2x(~4x
-- X 2X ~ n"

< (e3s2x)x
- 16n

We need to sum of this expression over all possible
values of x. Since x is at least 2 and at most o(n),
the total probability is O(1/n2).

Let us perform a bN on the undirected graph G
starting from a certain node V to a depth of h. Note
that this is different from the backward search from
the same node to a depth of h that also involves a bfs
along directed edges in reverse direction. To distinguish
between the two we will refer to the former as 'bfs on the
undirected graph' and the latter as 'backward search'.
Let B F S h (V) denote the subgraph visited by the bfs
on the undirected graph to a depth of h. Clearly the
nodes visited in the backward search to a depth of h
will be a subset of those visited in B F S h (V) to a depth
of h. We will compare this bfs on the random undirected
graph G to a branching process. Since sn/2 edges are
randomly thrown into the graph G on n vertices, each
of the total of sn endpoints of these edges are chosen
randomly. If we ignore the possibility of forming self
loops and choose these endpoints independently, a node
will have k edges incident on it with probability ak =
(~') (1/n)k(1 - 1/'n) s'~-k ,~ e-Ssk/k! (accurate for large
n and k < < n and can be safely used in summations).
This probability is asymptotically accurate even if we

condition on a certain subgraph with at most o(n) nodes
and edges as it makes a negligible difference in the ratio
of remaining nodes and edges.

Consider a branching process where each node has
k children with this probability ak; this branching
process is completely separate from the bfs and simply
constructs a tree where each node has k children with
this probability ak. Let BRTh be the tree obtained
by running such a branching process to a depth of h.
We will later show that assuming no cycles are found
during the bfs to depth h, the tree B F S h (V) that is
obtained has asymptotically the same distribution as
that of BRTh. If BFS h (V) is a tree and only contains
nodes with load at least two, then one can embed a
complete, balanced binary tree of depth h in it. We
will show that the probability of this event is close
the probability of the being able to embed a complete,
balanced binary tree of depth h in BRTh. The next two
lemmas show that it is unlikely to be able to embed a
complete, balanced binary tree of depth h in BRTh if
s < 3.35.

LEMMA 3.3. Let Pi be the probability that a complete,
balanced binary tree of depth i can be embedded in the
tree BRTi obtained by running the branching process to
depth i. Then Pi+l = 1 - e-P~s(1 +pis)

Proof. We compute Pi recursively. Look at a node at
height i + 1. At least two of its children nmst satisfy
the recursive property which happens with probability
pi. If there are k children, probability that less than 2
of them satisfy the property is (1 _p~)k + kp~(1--pi) k - 1 .

Probability of having k children = ak
So,

P i + l : E a k (1 - (1 _p i) k _ kpi(1 _pi)~.-1)
k~_2

= E a k (1 - (1 - p i) k - kp~(1 _pi)a-1)
k

: 1 - E a k (i - p i) k _ E a ~ k p i (1 - p i) k-1
k k

8 k 8 k
= 1 - - e - s E ~ , . l (1 - - p ~) k - - e - s E - ~ k p ~ (1 - - p i) k-1

k k

= 1 - - e - S e s (1 - p i) -- e - S p i s ~ S k - 1
k>l (£----~)! (1 -- pd k - t

= 1 - - e - s e s (1 - p i) - - e - S p i s e s (1 - p i)

= 1 - e -P~S(l+ps)

Note that in this computation the approximation
of ak as e-Ssk/k! need not be used; each summa-
tions can be computed with the exact value of ak =

833

('k~)(U,n)k(1 - l / n) "n-k. This still does not affect the
final value.

LEMMA 3.4. For any s < so ~ 3.35, the probability
that a complete, balanced binary tree of depth h can be
embedded in BRTh, can be made smaller than 1/n c, for
any constant c, by choosing h = log logn + O(1)

Proof. As long as s is such that 1 - e-P~(1 + ps) is
always less than p for any p E (0, 1], the sequence p~
is monotonically decreasing. If ps is very snmll this
expression is close t o p282 as e -ps can be approximated
as 1 - p s . If P i - P ~ + i is at least some small positive
constant, in a constant number of steps p can be made
smaller than 1/(10s), after which it s tarts decreasing
quadratically each step with the recursion Pi+l = P~ s2
that is equivalent to pi+ls ~ = (p is2) 2. So after this
point, in log logn + O(1) steps, the probabili ty should
drop below 1/n c.

We want that for any p C (0, 1]

1 + p s
1 - e-PS(1 + p s) < p ¢ v e ps < - -

1 - p

By writing both sides as a Taylor series in p and
comparing, we see that this is satisfied if

s2/2 < s + l ~ s < v/3 + l < 3.74

The exact value of so is determined by setting
it to the smallest value of s for which the flmction
f (x) = 1 + xs - eXS(1 - x) satisfy the condition f (x) > 0
in the interval [0, 1]

A bet ter value of so ~ 3.35 is obtained by plotting
graphs for the functions f (x) = 1 + xs - eXS(1 - x) in
the interval [0, 1] showing that f (x) > 0 for s < 3.35 in
this interval.

This value of s is tight; that is, for s > 3.36 it can
be shown that p converges to 0.5, implying that it is
possible to embed a binary tree.

Next we extend this result on the tree obtained fi'om
the branching process to any tree that may be obtained
by the bfs.

LEMMA 3.5. With high p~vbability, 1 -O(1 /nC-1) , there
does not exist a node V in G so that the bfs f i r m V to
depth h = l o g l o g n + O (1) does not encounter any cycles
and results in a tree containing a complete, balanced
binary tree of depth h embedded in it. (Note that the
bfs could be perfo~'rned from an edge U V where the first
level of bfs fTvm the root V does not visit U. This is a
technical detail that will be used later.)

Proof. We will argue tha t if the bfs results in a tree, its
distribution is asyInptotically same as that produced

5

by the branching process. First note that the total
number of nodes visited is small as compared to n, as
the maximum degree d is O(log n) with high probabil i ty
and the values of h in consideration is O(log log n), and
so the total number of nodes, d h, is (logn) O(l°gl°g~0.

Even if we condition on the existence of a certain
subgraph with at most o(n) nodes and edges it makes
a negligible difference in the ratio of remaining nodes
and edges. So during the bfs, after exploring say at
most x nodes and edges (x is at most (logn)°(l°gl°g"O),
the conditional probabili ty that the next node to be
expanded has k (k is at most O(log n)) edges emanat ing
from it all of which lead to new nodes, is very close to
ak. I t can be verified that the conditional probabil i ty

[n~ / sn /2"~k l t 2 ~k(1 _ 2(n -x) s n / 2 - x
is at most kk)k k) "k~T=~=U'-J t (.n_l)2J -
number of ways of choosing k child nodes and edges
to those nodes is at most (~)(s'[/2)k!; probabil i ty tha t
one of the k edges leads to the chosen child is at most
1 / (,~x) ; probabili ty tha t each of the remaining sn/2-x
edges are not incident on this node is at least (n - x) / (~)
as at least n - x edge positions are forbidden. This
upper bound differs from ak by at most a multiplicative
factor of 1 + O (k x / n) , for the small values of k and x
under consideration. So the probabil i ty that the bfs
and the branching process produce identical trees of
a given structure with at most x nodes, differ by at
most a multiplicative factor of 1 + O(kx2 /n) = 1 + o(1).
So by applying this argument to all possible trees t lmt
can have a complete, balanced binary tree of depth
h, embedded in it, we can conclude that since with
high probabili ty of 1 - O(1/nC), BRTh cannot have a
complete binary tree embedded in it, same must be true
about B F S h (V) even if it were a tree. Clearly this can
be extended to all vertices V with high probabili ty of
1 - O (1 / n C - 1) .

So far we have only considered the case tha t
B F S h (V) is a tree. Let us prove tha t it is very unlikely
that the bfs finds too many edges tha t create cycles,
where by cycle-creating edges we mean the edges tha t
lead to already visited nodes during the search..

LEMMA 3.6. With high probability, 1 - O(1 /n c) there
does not exist a subgraph of x _< c log n nodes in G with
at least x + O(c) (precisely, x + c(4 + log(s//2))) edges.

Proof. If there is such a subgraph of x nodes, we will
show that the probabil i ty of such an event is negligible.
Nmnber of ways of choosing x nodes and x + u edges
from the sn /2 edges is (n~ (sn/2~ Probabil i ty of a given \ x] k 2 + u] '

edge falling in this subgraph is -< 7~ So the total

834

probability is

n sn/2 x 2 (2 x+2" < ~ .
- x x + u

e n x e s n / 2 x+u x 2 x + 2 u

_< (T) (T Z Z) (~) •

<_ e~+"(~./2)~+u(~)"
< (es)~'e~x(-S)~(~u
- " 2 " " 2 " " n "

e s .u 2 c l o n S lo n c l o g ? ~ u
< (T) e ~ (~)~ ~ (--:£--)

e8 u~,c(2+log(s/2)) [c log n ~u -< (V) " ~ - - i / - '

By setting u = c(4 + log(s/2)) this becomes O(1/n c)

The following lemma shows that a bN to a depth
of o(logn) can not encounter more than 5c edges that
create cycles.

LEMMA 3.7. For s < so ~ 3.35, with high probability,
1 - O(1/'n~), in a subtree T of G with height o(logn)
there cannot be 5e edges in G that are between nodes in
T but are not edges of T.

Pro@ For if there were, then consider the tree spanning
end-points of these 5c edges from G not in T, obtained
by taking the union of all the paths from these end-
points to the root. As the number of endpoints of
these 5c edges is at most 10c and each requires at most
o(log n) edges to connect to the root, the size, x, of this
spanning tree is clearly less than clog n.

Adding the 5c edges to the spanning tree gives us
at least x + 5c edges. By lemma 3.6, for s < 4, this is
unlikely and has probability at most O(1/n~).

Now we will show that a large, complete binary tree
cannot be embedded in G.

LEMMA 3.8. With high pwbability, 1 - O(1/'nC), it is
not possible to embed a complete, balanced binary tree
B of height h = l o g l o g n + O (1) in the random graph G.

P w @ Assume that we can embed such a binary tree
B rooted at V in G. Perform a bfs from V to a depth
of h. By lemma 3.7, at most 5c cycle creating edges
can be found with high probability in B F S h (V) . Let
B F S ~ (V) denote the tree obtained by deleting these 5e
edges from B F S h (V) . There must be some node V' in
B at depth at most log(Sc)+ 1 so that the binary subtree
rooted at that node is still intact in BFS~(V) ; that is
it does not contain any of the 5c deleted edges. Let B ~
denote the binary subtree of B rooted at V ~. Now look
at the at most 10e paths from the endpoints of these

deleted edges to V. Since any single path can intersect
at most 2 nodes at a certain level in B ~, there nmst be
some node V" at depth log(20c) + 1 in B ~ that is not
on any of these 10c paths. Also, at least one of the
two children of V" in B' (say W) must also be a child
of V" in B F S ~ (V) , as V" has at most one parent in
BFS ~(V) . Look at the binary subtree B" of B p rooted
at W. The height of B" differs from that of B by at
most log(5c) + log(20c) + 3. Also the bfs from the edge
V " W (that is, the first level of the bfs fi'om W does not
visit V") is free of cycles as otherwise V" is on one of the
10c paths. Further it has a complete, balanced binary
tree B" embedded in it. By choosing h large enough we
can ensure that height of B" is at least that required by
lemma 3.5 giving a contradiction

We are now ready to prove that during an insert a
backward search to a depth of log log n + O(1) nmst find
with high probability a node with load less than 2. The
total search time is at most O(log n).

THEOREM 3.1. For" s < so ~ 3.35, with high probabil-
ity, 1 - 0 (1 / n 2) , during an insert, ,if we traverse back-
ward to a depth o f log logn + O(1), we will have found
a node with load less than 2, with high probability, while
searching at most O(log n) nodes. The expected time for
this search is O(1).

Proof. Assume that during an insert, we don' t find
a node of load less than 2. Then since with high
probability by lemma 3.2 we cannot get stuck after a
few levels and by lemma 3.7 we cannot encounter more
than 5e cycle producing edges, there nmst be a node at
depth log(5c)+ 1 so that the backward search under that
does not find any cycles. This gives a complete binary
tree of height log log n + O(1), contradicting lemma 3.8.

The expected depth of search is constant as can be
seen by the quadratic drop of Pi with i.

This proves that inserts can be made while main-
taining a maximum load of 2, with high probability.
The algorithm works even if the number of items, m
is greater than n as long as 2 m / n < 3.35. Even
if the two entries in each buckets are statically allo-
cated, we can achieve a memory utilization rn/(2n) of
3.35/4 > 83.75%. Thus the memory wastage is only
16.25%.

Note that our value of s = 3.35 may not be tight for
maintaining a maximum load of two as the calculation
was done based on existence of a complete binary tree,
which may not be necessary for the existence of a 2-
dense subgraph nor for being able to perform inserts in
log log n + O(1) moves. It is easy to show, however, that
for s > 3.72, it is impossible to maintain a maximum

835

load of two. This is because for such a random graph, by
deleting isolated nodes and nodes of degree one, we end
up with a non-empty component with density greater
than 2.

Generalizing to constant bucket size larger than 2:
Our analysis for max imum bucket size of 2 can be
generalized to any constant maximum load i. I t turns
out that the best provable memory utilization remains
around 80% for initial value of i > 2 and then drops for
larger i.

3.1 R a n d o m W a l k . The previous algorithm per-
forms a bfs. An al ternate algorithm is to simply per-
form a random walk to look for a lightly loaded node.
We show that for m < 0.65n, a random walk of length
O(log n) will reveal a node with load at most 1. Again,
first we ignore the possibility of running into cycles.

THEOREM 3.2. With high probability, 1 - O(1/n2), for
any s < 1.3, a random walk of length O(log n) will find
a node with load at most two.

Proof. We will show that the probabili ty of finding a
long pa th where every node has load at least two is
negligible. Probabil i ty that a node has k children is
e-Ssk/k! . Number of ways of choosing the next node
on the pa th is at most k. So, for each node, number of
ways of choosing next node weighted by probabil i ty is

~k_>2 ~-~k! = s(1 -- e-~). As long as this is less than
one, the probabili ty of finding a pa th of length O(log n)
is negligible. This is true for s < 1.3.

THEOREM 3.3. With high probability, 1 - O(1/n2), for
m = n, a random walk of length O(log n) will find a
node with load at most 4.

Proof. We will show that the probabil i ty of finding a
long pa th where every node has load at least four is
negligible. Probabil i ty tha t a node has k children is
e-*sk/k! , where in this case s = 2. Number of ways of
choosing the next node on the pa th is at most k. SoT
for each node, number of ways of choosing next node

e-22~ weighted by probabil i ty is ~k>4-"'k~---" Since this is
less than one, the probabil i ty of~inding a pa th of length
O(log n) is negligible.

To address the possibility of cycles, on finding an
edge that produces one, we simply backtrack by the
fewest possible number of edges and continue our search
as if in a DFS. We will show that this backtracking can
not happen too often. If this happens c times, we get a
graph of size at most O(log n) + c that has c more edges
than nodes. By choosing c the be large enough constant,
we can satisfy the condition of lemma 3.6, proving that
this is unlikely.

4 G e n e r a l i z i n g to f e w e r m o v e s

So far we have looked at the number of moves required
to maintain a constant load. Here we examine the
max imum load when fewer bins are explored. In
particular, we could examine only the two bins and
their children. So, if an i tem gets hashed to say U1
and U2, we could examine only U1, U2 and the children
of U1 and U2, and pick the least loaded of these to bear
the new load. This would require at most one move.
Instead of examining the children to a depth of one,
we could explore all the descendants to a depth of h
by performing a bfs along directed edges in the reverse
direction. By restricting the search to a depth of h,
we ensure tha t at most h moves are required. In this
section we upper bound the max imum load when all
descendants up to depth h are examined during inserts.

The basic intuition is tha t if the load of the new
item is borne by a node with load i, then each of
examined nodes must have at least i children. So we
must have explored roughly a total of i h nodes, each
with a load of at least i. If Pi is the probabil i ty of
a node having load at least i, then assunfing these
events are independent, they happen with probabil i ty

i h i h
Pi • This gives us approximately, Pi+l = Pi , and
so Pi = 2 -~('i-1)!h. Pi becomes o(1/n c) for i >
O(hlogl(~o~o~'n/h)) We give a more formal proof of this
result without making the independence assumption.

Our proof is based on the witness tree approach -
one of earliest uses of this approach can be found in [5]
[18] [2]. Consider an event tha t leads to a load of 61 at
a certain node. For this event to happen, we will show
that there must exist a tree of large size obtained by
tracing all the events that must have happened earlier.
The approach however requires significant adapta t ion to
our problem as the directions of the edges change over
time. To simplify the exposition, we will s tate the proof
assuming m = n (s = 1); essentially, the same proof
works for any constant s.

Construction of the witness graph: Whenever the
load of a node X becomes i, there must be a unique edge
whose insertion causes this to happen. Say U1 U2 was
this edge; that is, U1 and U2 are the bins to which the
i tem got hashed. Look at the directed graph when this
edge was being added. During the insertion, a backward
search to a depth of h was performed from both U1
and U2. Say the node X was obtained by traversing
back from U1 to depth of at most h. We will say that
the edge U1U2 is the i th contributing-edge of X, U2 is
the i th contributing-peer of X, and the directed pa th
from X to U1 along which moves were made, is the
i th contributing-path for X. Since X is a node with
minimum load among the ones visited, it nmst be the

7

836

case that all the nodes at depth at most h from U~ must
have load at least i - 1. Note tha t the contributing edge
U1 U2 must be newer than and therefore distinct fl'om all
the edges traversed in backward search from U2. Also
for each node and each value of i the ith-contributing
edge has to be unique.

The witness graph is obtained by recursively
chasing contributing edges for nodes visited in the
backward search fl'om the contributing peer U2. First
we make a simplifying assumption that during the
construction of the witness graph, we never run into
cycles, always leaving the graph as a tree. Later, as
in section 3, we will argue that the number of edges
that produce cycles is few enough that they can be
ignored. Our goal is to obtain a large witness tree with
high degree nodes and argue that such a subgraph is
unlikely to exist in G. The problem is that even with
our assumption of not encountering cycles, it is still
possible to visit earlier nodes through contributing
paths, as contributing paths could completely consist
of edges in the visited subtree, not leading to any
new nodes. We overcome this issue by computing the
witness tree by the following recursive procedure.

For a given/-contr ibut ing edge U1 U2:

Say, U2 is the i th contributing-peer corresponding
to this edge; that is, the load for this insert was
taken by some node under U1.

Look at the subtree, T, (must be a tree by assump-
tion of not encountering cycles) obtained by per-
fornfing a backward search to depth h from node
U2 when the insertion took place. Look at the set
of leaves, L, of this subtree. At that t ime each node
in T has load at least i - 1. Since each internal node
in L has at least i - 1 children the number of edges
in L is at most 21L I.

Look at the set S of all edges that are j -
contributing edges for some node in L, for either
j = i - 1 or i - 2 or i - 3 . Essentially an edge
e E S if and only if there is a node V c L and
a j E { i - 1 , i - 2 , i - 3 } such that e is the j -
contributing edge for V. Since the subtree T has at
most 2[L I edges and the set S has 31L I edges, there
must be a set Q of at least ILl edges in S that are
outside the subtree T. As all the contributing paths
leading to these edges are older than the edge U1 U2
that connects the subtree to the rest of the witness
tree, and since by assumption no cycles are encoun-
tered, these edges in Q must be outside the entire
witness tree constructed so far. To avoid cycles,
the corresponding contributing paths must branch
off T before reaching the contributing edge in Q.

• Repeat recursively for each j-contributing-edge in
Q, where j > i - 3

We chop the recursion depth down to I. Also, during
the backward bfs, for each node, we pick only l children
even if more may be present. Essentially, the witness
tree looks like a tree of sub-trees linked by contributing
paths. Each subtree has I h "children" subtrees and no
node or edge is repeated. The height of this tree in
terms of number of subtrees is 1. View all edges in this
tree as undirected.

For large enough l, we will show that such a witness
tree cannot exist with high probability.

LEMMA 4.1. Assuming no cycles are encountered while
constructing the witness tree, probability that such a

lo~ log; n
witness tree exists for 1 > hlog(loglogn/h) + 0(1) is at
most O(1/nC), where c is any given constant.

Pro@ We will calculate the probability by multiplying
the the total number of possible such trees with their
individual probabilities. Note that all vertices, except
those on the contributing paths, have at least 1 children.

Ways of choosing I children: For a given node,
nmnber of ways of choosing these chiklren is C~);
number of ways of assigning edges is at most nl; and
the probability of realizing an assignment of edges is at
most (=2)z So the total probability of a given node

n "
hav ing /ch i ld ren is (?)nZ(~) ' < (.~)z.

Ways of choosing a contributing path: As for the
other nodes, these can only be on contributing paths of
length at most h from a node to its contributing-peer.
As pointed earlier, all such contributing paths of length
at most h nmst branch off the subtree they originate
from. For a given contributing pa th this branching off
point can be chosen in at most I h ways.

Number of ways of choosing the rest of the pa th of
length at most h weighted by probabili ty < (munber
of ways of choosing h vertices) x (number of ways of
choosing h edges) x (probability of these edges falling

n h n h [2 "~h 2 h in the right place) _< t ~) -< So, total number
of ways of choosing a contributing path weighted by
probabili ty is at most 2hl h = (2l) h.

Total probability: Each subtree has at least l h-1
nodes that have l children each, and each subtree is
rooted at one contributing path. So number of ways
of choosing each subtree weighted by probabili ty is

(2l)h _<
Total number of such subtrees is at least l (l-])h. So

total number of ways of choosing witness trees weighted
4e lhl (t-1)h 4e I n' by probability is (-T) = (-7-) " We ueed to

choose l such that this probabili ty is o(1/n~). This is
log log n

achieved by setting l to hlog(loglogn/h) + O (1)

837

So far we have assumed that the construction of the
witness graph does not encounter any cycle producing
edges. We will prove that it is very unlikely that it
has too many edges that lead to cycles. Again as in
section 3, using lemma 3.7 we argue that instead of
starting with a node of load 61, if we start with a node
of load 61 + 5c and at tempt to construct the witness
tree to a recursion depth of I + 1, it is very unlikely to
encounter more than 5c cycle producing edges. Since
the node under the root contributing-peer has more
than 5c children, at least one of them must be such
that the witness graph construction under that node is
free of cycle-producing edges, giving the desired result.
This proves the following theorem.

THEOREM 4.1. By searching to a depth h, with high
probability, 1 - O(1/n~) , an insert will not lead to a load
of more than 6, , l o, gl?gn ... + 0(1~ for any constant

n i o g t l o g m g n / h) ~]~
C.

Note that by setting h = O(loglogn), we get that
the maximum load is a constant, which is consistent
with theorem 3.1. We will now show that this holds true
even without the assumption that the hash functions
used are truly random.

4.1 U s i n g c l o g n - U n i v e r s a l H a s h F u n c t i o n s .
We will now argue that theorem 4.1 holds even if
we use c log n-universal (c log n-way independent) hash
functions instead of truly random hash functions. The
essential idea is to extend the argument of the low
probability of existence of a witness tree. Our argument
in section 4 was along the following lines: we outlined
the "shape" of the witness tree and showed that the
stun of the probabilities over all such trees in the
random graph G is negligible. Since the witness trees
we construct are of size 1 th = O(logn), and the new
hash functions we use are clog n-way independent, for
some large enough constant c, the probability of finding
a given witness tree (of size at most c logn) in the
graph is the same as before. So the earlier bound
on the total probability of finding any witness tree,
obtained by summation, still holds. Next, we used
lemma 3.7, to handle the case when we find cycle
producing edges while constructing the witness graph.
Lemma 3.7 makes use of lemma 3.6 which is still true
with c logn-way independent hash functions as lemma
3.6 is only concerned with O(log n) edges in subgraphs
of size O(log n). So we have shown:

COROLLARY 4.1. The guarantees stated in theorem 4.1
holds even 'if clog n-universal hash funct ions are used
instead of truly random hash functions, for some large
enough constant c.

Acknowledgments
I would like to thank Tomas Feder, Michael Mitzen-
macher, Christian Scheideler and Rajeev Motwani for
useful discussions. I also wish to thank Artur Czulnaj
for providing me with a draft of his paper [7].

References

[1] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal.
Balanced allocations. SIAM Journal on Computing,
29:180200, 1999. A preliminary version of this paper
appeared in Proceedings of the Twenty-Sixth Annual
ACM Symposium on the Theory of Computing, 1994.

[2] M. Adler, S. Chakrabarti, M. Mitzenmacher, and
L. Rasnmssen. Parallel randomized load balancing.
In Proceedings of the Twenty-Seventh Annual ACM
Symposium on the Theory of Computing, pages 238-
247, May 1995.

[3] A. Broder and M. Mitzenmacher Using Multiple Hash
Functions to hnprove IP Lookups Proceedings of IEEE
INFOCOM 2001, pp. 1454-1463, 2001.

[4] R. Cole, A. Frieze, B.M. Maggs, M. Mitzenmacher, A.
W. Richa, R. K. Sitaraman, and E. Upfal. On balls
and bins with deletions. In Second International Work-
shop on Randomization and Approximation Tech-
niques in Computer Science (RANDOM), number 1518
in Lecture Notes in Computer Science, pages 145-158.
Springer-Verlag, October 1998.

[5] A. Czumaj, F. Meyer auf der Heide, and V. Stemann.
Shared memory simulations with triple-logarithlnic de-
lay. Lecture Notes in Computer Science, 979:46-59,
1995.

[6] A. Czumaj and V. Stemann. Randomized allocation
processes. Random Struct. Algorithms 18(4): 297-
331 (2001). A preliminary version appeared in the
proceedings of the Thirty-Eighth Annual Symposium
on Foundations of Computer Science, pages 194-203,
October 1997.

[7] A. Czunmj, C. Riley, and C. Scheideler. Perfectly Bal-
anced Allocation In Proceedings of the 7th Interna-
tional Workshop on Randomization and Approxima-
tion Techniques in Computer Science (RANDOM'03),
pages 240 - 251.

[8] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn,
Friedhehn Meyer auf der Heide, Hans Rohnert, and
Robert E. Tarjan. Dynamic perfect hashing: Upper
and lower bounds. SIAM J. Comput., 23(4):738-761,
1994.

[9] L. Devroye and P. Morin. Cuckoo hashing: further
analysis. Information Processing Letters, col. 86, pp.
215-219, 2003

[10] Martin Dietzfelbinger and Friedhehn Meyer auf der
Heide. A new universal class of hash functions and dy-
namic hashing in real time. In Proceedings of the 17th
International Colloquium on Automata, Languages
and Program- ruing (ICALP '90), volume 443 of Lee-

838

ture Notes in Computer Science, pages 6-19. Springer-
Verlag, Berlin, 1990.

Ill] M. Dietzfelbinger and F. Meyer auf der Heide. Simple
Efficient Shared Memory Simulations. Proc. of the 5th
SPAA (1993); pp. 110-119.

[12] Martin Dietzfelbinger and Philipp Woelfel. Ahnost
random graphs with simple hash functions. In the
proceedings of STOC 2003, pp. 629-638

[13] Martin Dietzfelbinger and Christoph Weidling. Cache-
fi'iendly dictionary implementations with constant
lookup time and small space overhead. Subnfitted to
STACS 2005. Also part of Christoph Weidling's PhD
thesis, to be published, Technical University of Ihne-
natl.

[14] Ehnd Friedgut and Gil Kalai, Every monotone graph
property has a sharp threshold, Proceedings of the
American Mathematical Society 124 (1996), 2993-3002.

[15] Michael L. Fredman, Janos Komlos, and Endre Sze-
meredi. Storing a sparse table with O(1) worst case
access time. J. Assoc. Comput. Math., 31(3):538-544,
1984.

[16] Dimitris Fotakis, Rasmus Pagh, Peter Sanders and
Paul Spirakis. Space Efficient Hash Tables With Worst
Case Constant Access Time. 20th Annual SymposiuIn
on Theoretical Aspects of Computer Science, 2003.

[17] M. Mitzenmacher, A. Richa, and R. Sitaraman The
Power of Two Random Choices: A Survey of Tech-
niques and Results Book chapter, in Handbook of Ran-
donfized Computing: volume 1, edited by P. PardMos,
S. Rajasekaran, and J. Rolim, pp. 255-312.

[18] F. Meyer auf der Heide, C. Scheideler and V. Ste-
nmnn. Exploiting Storage Redundancy to Speed Up
Randomized Shared Memory Sinmlations. Theoretical
Computer Science, 162(2):245-281, 1996. Preliminary
version in Proc. of the 12th STACS (1995); pp. 267-
278.

[19] Anna stlin and R. Pagh. Uniform Hashing in Constant
Time and Linear Space In the proceedings of STOC
2003, pp. 622-628.

[20] R. Pagh and F. Rodler. Cuckoo Hashing. JournM
of Algorithms 51 (2004), p. 122-144. A preliminary
version appeared in proceedings of the 9th Animal
Enropean Symposium on Algorithms. pp. 121-133,
2001.

[21] B. Pittel, S. Spencer and N. Wormald. Sudden emer-
gence of a giant k-core in a random graph. J. Combin.
Theory Ser. B 67 (1996), no. 1, 111-151.

[22] Peter Sanders, Sebastian Egner, Jan H. M. Korst.
Fast concurrent access to parallel disks. Algorithmica,
35(1):21-55,2003. A Preliminary version appeared in
SODA 2000: 849-858.

10

839

