A New Approach to Incremental Cycle Detection
Michael A. Bender Jeremy T. Fineman Seth Gilbert Robert E. Tarjan
1. Introduction

Perhaps the most basic algorithmic problem on directed graphs is cycle detection. We consider an incremental version of this problem: given an initially empty graph that grows by on-line arc insertions, report the first insertion that creates a cycle.
We use the following list and graph terminology. We denote a list by square brackets around its elements; we denote list catenation by “&”. We consider directed graphs. We denote an arc from v to w by (v, w). We disallow multiple arcs and loops (arcs of the form (v, v)). We assume that the set of vertices is fixed and known in advance, although our results extend easily to handle on-line vertex insertions. We denote by n and m the number of vertices and arcs respectively. To simplify expressions for bounds we assume
[image: image1.wmf]1

n

>

and
[image: image2.wmf]();

mn

=W

 both are true if there are no isolated vertices. A vertex v is a predecessor of w if (v, w) is an arc. The size(w) of a vertex w is the number of vertices v such that there is a path from v to w. Two vertices, two arcs, or a vertex and an arc are related if they are on a common path, mutually related if they are on a common cycle (not necessarily simple), and unrelated if they are not on a common path. The strong components of a directed graph are the subgraphs induced by the maximal subsets of mutually related vertices.
A dag is a directed acyclic graph. A weak topological order < of a dag is a partial order of the vertices such that if (v, w) is an arc,
[image: image3.wmf];

vw

<

 a topological order of a dag is a total order of the vertices that is a weak topological order. A weak topological numbering of a dag is a numbering of the vertices such that increasing numeric order is a weak topological order; a topological numbering of a dag is a numbering of the vertices from 1 through n such that increasing numeric order is a topological order.
We maintain a weak topological numbering and use it to facilitate cycle detection. Our algorithms pay for cycle-detecting searches by increasing the numbers of appropriate vertices; a bound on the numbers gives a bound on the running time. One insight is that the size function is a weak topological numbering. Unfortunately, maintaining this function as arcs are inserted seems to be expensive. But we are able to maintain in
[image: image4.wmf]2

O(log)

nn

time a weak topological order that is a lower bound on size. This gives an incremental cycle detection algorithm with the same running time. Our algorithm uses one-way search. For sparse graphs, we use a two-part numbering scheme. The first part is a scaled lower bound on size, and the second part breaks ties. This idea yields an algorithm with a running time of O(min{m1/2, n2/3}m).

2. A Two-Way-Search Algorithm for Sparse Graphs
Our algorithm for sparse graphs uses two-way search. We use a two-part numbering scheme to implicitly maintain a topological order. We partition the vertices into levels. We maintain a weak topological numbering of the levels; within each level, we keep the vertices numbered in topological order. Each backward search proceeds entirely within a level. If the search takes too long, we stop it and increase the level of a vertex. This bounds the backward search time. Each forward search traverses only arcs that lead to a lower level, and it increases the level of each vertex visited. An overall bound on such increases gives a bound on the time of all the forward searches. If the backward and forward searches do not detect a cycle, we update vertex indices to restore weak topological order. To facilitate this, we make the searches depth-first.

Each vertex v has a level
[image: image5.wmf]()

kv

and an index
[image: image6.wmf]().

iv

 The following invariant holds initially and after each arc insertion:
Invariant 1: For every arc (v, w), either
[image: image7.wmf]()(),

kvkw

<

 or
[image: image8.wmf]()()

kvkw

=

 and
[image: image9.wmf]()().

iviw

<

Levels are positive integers and indices are negative integers. We make indices negative because newly assigned indices must be smaller than old ones. An alternative is to maintain the negatives of the indices and reverse the sense of all index comparisons. Initially, each vertex v has
[image: image10.wmf]()1

kv

=

and
[image: image11.wmf]()

iv

an integer between
[image: image12.wmf]n

-

 and
[image: image13.wmf]1

-

 inclusive, distinct for each vertex.

In addition to levels and indices, we maintain a variable c equal to the smallest index assigned so far. To represent the graph, we maintain for each vertex v the set out(v) of outgoing arcs (v, w) and the set in(v) of incoming arcs (u, v) such that
[image: image14.wmf]()().

kukv

=

 Initially
[image: image15.wmf]cn

=-

 and all incident arc sets are empty.
To measure search time, we count arc traversals. Let
[image: image16.wmf]1/2

min{,

m

D=

[image: image17.wmf]2/3

}.

n

Insert a new arc (v, w) as follows: Add (v, w) to out(v). If
[image: image18.wmf]()()

kvkw

=

 add (v, w) to in(w). If
[image: image19.wmf]()(),

kvkw

>

 or
[image: image20.wmf]()()

kvkw

=

and
[image: image21.wmf]()(),

iviw

>

 do the following steps:
Step 1: If
[image: image22.wmf]()(),

kvkw

>

 increase
[image: image23.wmf]()

kw

to
[image: image24.wmf]()

kv

 and let in(w) = {(v, w)}. Now
[image: image25.wmf]()().

kvkw

=

Step 2: Do a bounded backward depth-first search from v, traversing only arcs (x, y) such that
[image: image26.wmf]()();

kxkv

=

 these are exactly the arcs in the incoming arc sets of the visited vertices. Stop when the search traverses an arc (w, y), or when the search runs out of arcs to traverse, or when it has traversed ∆ arcs. If the search traverses an arc (w, y), stop the algorithm and report the detection of a cycle. If the search runs out of arcs to traverse, let B be a list of the vertices visited by the search, in postorder. If the search traverses ∆ arcs, increase
[image: image27.wmf]()

kw

by one, let
[image: image28.wmf](){},

inw

=

 and let B = [].
Step 3: If
[image: image29.wmf]()

kw

did not increase in Step 1 or Step 2, let F = [] and go to Step 4. Otherwise, do a forward depth-first search from w, extending the search only from vertices of level less than
[image: image30.wmf]().

kw

 When traversing an arc (x, y) with
[image: image31.wmf]()(),

kwky

>

 increase
[image: image32.wmf]()

ky

 to
[image: image33.wmf](),

kw

 let
[image: image34.wmf](){(,)},

inyxy

=

and search recursively from y; when traversing an arc (x, y) with
[image: image35.wmf]()(),

kwky

=

 add (x, y) to in(y). If the search traverses an arc (x, y) with
[image: image36.wmf]yv

=

 or y in B, stop the algorithm and report the detection of a cycle. If the search finishes without detecting a cycle, let F be a list of the vertices visited by the search, in reverse postorder.
Step 4. Give the vertices on B & F new indices, consecutively increasing up to
[image: image37.wmf]1,

c

-

 inclusive. Let c be the smallest new index.
Theorem 1 If a new arc creates a cycle, the insertion algorithm stops and reports a cycle. If not, the insertion algorithm correctly maintains the incoming and outgoing arc sets, the value of c, and Invariant 1.
Proof The proof is by induction on the number of arc insertions. Suppose the theorem holds just before the insertion of an arc (v, w). If the algorithm stops on this insertion and reports a cycle, there is one. Suppose the insertion of (v, w) creates a cycle. Such a cycle consists of the arc (v, w) and a pre-existing path from w to v. Since level order is topological between levels, w has minimum level on this path and v has maximum level. If v and w have the same level, then all vertices on the path have the same level, and either the backward search will traverse the entire path and report a cycle, or it will report a different cycle, or it will stop and w will increase in level. If v has larger level than w, w will increase in level in Step 1. Suppose the backward search does not report a cycle. Then w will increase in level in Step 1 or 2, and there will be a forward search. At the beginning of Step 3, vertex w has maximum level on the cycle, and B is the set of vertices from which v is reachable by a path all of whose vertices have level
[image: image38.wmf]().

kw

 Every vertex on the cycle that is not v and not in B thus must have level less than
[image: image39.wmf](),

kw

 and the forward search from w will eventually visit each such vertex, traversing the cycle forward, until traversing an arc (x, y) with
[image: image40.wmf]yv

=

 or y in B and reporting a cycle. We conclude that the algorithm reports a cycle if and only if an arc insertion creates one.
Suppose the insertion of an arc (v, w) does not create a cycle. Clearly the insertion algorithm maintains the outgoing arc sets and the value of c correctly. We show that the algorithm maintains the incoming arc sets correctly. If
[image: image41.wmf]()()

kvkw

=

and
[image: image42.wmf]()()

iviw

<

when (v, w) is inserted, (v, w) is correctly added to in(w). If
[image: image43.wmf]()()

kvkw

=

after Step 2, arc (v, w) is correctly added to in(w) either before or during Step 1. If
[image: image44.wmf]()()

kvkw

<

after Step 2,
(v, w) is correctly deleted from in(w) during Step 2. Thus (v, w) is in in(w) after the insertion of (v, w) if and only if
[image: image45.wmf]()().

kvkw

=

 Consider an arc (x, y) other than (v, w). If neither
[image: image46.wmf]()

kx

 nor
[image: image47.wmf]()

ky

increases as a result of Steps 1, 2, and 3, (x, y) is in in(y) if and only if
[image: image48.wmf]()()

kxky

=

 after the insertion of (v, w), by the induction hypothesis. If
[image: image49.wmf]()

ky

 but not
[image: image50.wmf]()

kx

 increases during Steps 1, 2, and 3, then in(y) = {} after
[image: image51.wmf]()

ky

increases. Once this happens,
[image: image52.wmf]()(),

kxky

<

 so (x, y) is not added to this set later. If
[image: image53.wmf]()

kx

 increases as a result of Steps 1, 2, and 3, then (x, y) will be traversed in the forward search. When (x, y) is traversed, either
[image: image54.wmf]()()

kxky

=

 and (x, y) will be correctly added to in(y), or
[image: image55.wmf]()(),

kxky

>

 in which case
[image: image56.wmf]()

ky

 will be increased to
[image: image57.wmf]()

kx

and (x, y) will be correctly added to in(y), or
[image: image58.wmf]()(),

kxky

<

 and (x, y) will not be added to in(y). Thus (x, y) is in in(y) after the insertion of (v, w) if and only if
[image: image59.wmf]()().

kxky

=

Now we show that the insertion algorithm maintains Invariant 1. After the backward search stops, B contains the vertices from which v is reachable by a path all of whose vertices have level
[image: image60.wmf]().

kw

 Also, if (x, y) is an arc with x not in B but y in B,
[image: image61.wmf]()().

kxky

<

 The level of every vertex in F increases to k(w) as a result of the arc insertion. After the renumbering in Step 4, consider any arc (x, y). If neither x nor y is in B & F, Invariant 1 holds because it held before the renumbering. If both x and y are in B & F, Invariant 1 holds because B & F is in topological order. If y is in B but x is not in B & F, then
[image: image62.wmf]()().

kxky

<

 If y is in F but x is not in B & F, then
[image: image63.wmf]()()

kxky

<

since y increased in level but x did not, and
[image: image64.wmf]()()

kxky

£

before the arc insertion. If x in B & F but y not in B & F, then
[image: image65.wmf]()()

kxky

£

 and
[image: image66.wmf]()()

ixiy

<

after the insertion. We conclude that the insertion algorithm maintains (1).
[image: image67.wmf]W

Lemma 1 The algorithm assigns no index less than –nm–n.
Proof All initial indices are at least
[image: image68.wmf].

n

-

 Each arc insertion decreases the minimum index by at most n, so after m insertions the maximum index is at most –nm–n.
[image: image69.wmf]W

Lemma 2 If
[image: image70.wmf]1/22/3

,

mn

£

 then no vertex level exceeds
[image: image71.wmf]1/2

2.

m

+

Proof A single arc insertion can increase the maximum level by at most one. This is true in particular of the last insertion, which is the only one that can create a cycle.

Fix a topological order just before the last insertion. Let
[image: image72.wmf]kj

>

 be a level assigned before the last insertion, and let w be the lowest vertex in the fixed topological order that is assigned level k. For w to be assigned level k, insertion of an arc (v, w) must result in a search backward from w that traverses at least m1/2 arcs (x, y) such that x has level
[image: image73.wmf]1

k

-

 when the search occurs. Since w exceeds x in the topological order, x still has level
[image: image74.wmf]1

k

-

 just before the last insertion. We charge the increase in the level of w to the set of such arcs (x, y). For different values of k, the sets of arcs charged are disjoint, since they lead from vertices of different levels just before the last insertion. Each such set contains at least m1/2 arcs, so there can be at most m1/2 such values of k.
The minimum level starts at 1, increases by at most m1/2 before the last insertion, and increases by at most 1 during the last insertion.
[image: image75.wmf]W

Lemma 3 If n2/3< m1/2, then no vertex level exceeds
[image: image76.wmf]2/3

2.

n

+

Proof Fix a topological order just before the last arc insertion. Let
[image: image77.wmf]1

k

>

be a level assigned before the last arc insertion, and let w be the lowest vertex in the fixed topological order assigned level k. For w to be assigned level k, the insertion of an arc (v, w) must cause a backward search from v that traverses at least n2/3 arcs both ends of which are on level
[image: image78.wmf]1.

k

-

 Since there are no loops or multiple arcs, this search must visit at least n1/3 vertices, all of which are on level
[image: image79.wmf]1

k

-

 just before the last insertion. We charge the increase in the level of w to these vertices. The sets of charged vertices are disjoint for different values of k, so there can be at most n2/3 such values of k. The maximum level starts at one, increases by one for each such k, and increases by at most one during the last insertion.
[image: image80.wmf]W

Theorem 2 The insertion algorithm takes
[image: image81.wmf]1/2

O(min{,

m

 EMBED Equation.DSMT4 [image: image82.wmf]2/3

}})

nm

time for m arc insertions.

Proof By Lemmas 1, 2, and 3, all levels and indices are polynomial in n, so assignments and comparisons of levels and indices take O(1) time. Each backward search takes
[image: image83.wmf]1/2

O()O(min{,

m

D=

[image: image84.wmf]2/3

}

n

) time. The time spent adding and removing arcs from incidence sets is O(1) per arc added or removed. An arc can be added or removed only when it is inserted into the graph or when the level of one of its ends increases. By Lemmas 2 and 3, this can happen at most
[image: image85.wmf]1/2

O(min{,

m

[image: image86.wmf]2/3

})

n

time per arc. The time for a forward search is O(1) plus O(1) per arc (x, y) such that x increases in level as the result of the arc insertion that triggers the search. By Lemmas 2 and 3, this happens
[image: image87.wmf]1/2

O(min{,

m

[image: image88.wmf]2/3

}

n

) times per arc.
[image: image89.wmf]W

The space needed by the algorithm is O(m).
3. A One-Way-Search Algorithm for Dense Graphs

The two-way-search algorithm becomes less and less efficient as the graph density increases; for sufficiently dense graphs, one-way-search is better. In this section we present a one-way search algorithm that takes
[image: image90.wmf]2

O(log)

nn

time for all arc insertions. The algorithm maintains for each vertex v level k(v) that is a weak topological numbering and satisfies the following invariant:

Invariant 2: For every vertex v,
[image: image91.wmf]()().

kvsizev

£

The algorithm pays for its searches by increasing k, using the following lemma to maintain invariant 2:
Lemma 4: In an acyclic graph, if a vertex v has j predecessors, each of size exceeding s, then
[image: image92.wmf]().

sizevsj

³+

Proof. Order the vertices of the graph in topological order and let u be the smallest predecessor of v. Then
[image: image93.wmf]()()1.

sizevsizeujsj

³+-³+

[image: image94.wmf]W

The algorithm uses Lemma 4 on a hierarchy of scales. For each vertex v, in addition to a level k(v), it maintains a bound
[image: image95.wmf]1

()

bv

and a count
[image: image96.wmf]()

i

cv

for each integer i,
[image: image97.wmf]0lg,

in

££

 where lg is the base-two logarithm. Initially
[image: image98.wmf]()1

kv

=

 for all v, and
[image: image99.wmf]()()0

ii

bvcv

==

for all v and i. To represent the graph, for each vertex v the algorithm stores the set of outgoing arcs (v, w) in a heap (priority queue) out(v), each arc having a priority that is at most k(w). (This priority is either k(w) or a previous value of k(w).) Initially all such heaps are empty.
The arc insertion algorithm maintains a set of arcs A to be traversed, initially empty. To insert an arc (v, w), add (v, w) to A and repeat the following steps until a cycle is detected or A is empty:
Traversal Step 1. Delete some arc (x, y) from A. If
[image: image100.wmf],

yv

=

 stop and report a cycle.
Traversal Step 2. If
[image: image101.wmf]()(),

kxky

³

 increase k(y) to
[image: image102.wmf]()1.

kx

+

 If, on the other hand,
[image: image103.wmf]()(),

kxky

<

 let
[image: image104.wmf](lg(()()),

ikykx

=-

êú

ëû

 add one to
[image: image105.wmf](),

i

cy

 and test whether
[image: image106.wmf]1

()32.

i

i

cy

+

=×

 If so, set
[image: image107.wmf]()0,

i

cy

=

 set
[image: image108.wmf]()max{(),

kyky

=

[image: image109.wmf]()32},

i

i

by

+×

and set
[image: image110.wmf]1

()()2).

i

i

byky

+

=-

Traversal Step 3. Delete from out(y) every arc with priority at most k(y) and add these arcs to A. Add (x, y) to out(x) with priority k(y).
In Traversal Step 3, an arc (y, z) that is deleted from out(y) may have
[image: image111.wmf]()(),

kykz

<

 because k(z) may have increased since (y, z) was last inserted into out(y). Subsequent traversal of such an arc may not increase k(z). It is to pay for such traversals that we need the mechanism of bounds and counts.

We implement each heap out(v) as an array of buckets indexed from 1 through n, with bucket i containing the arcs with priority i. We also maintain the smallest index of a non-empty bucket in the heap. This index never decreases, so the total time to increment it over all deletions from the heap is O(n). The time to insert an arc into a heap is O(1). The time to delete a set of arcs from a bucket is O(1) is per arc deleted. The time for heap operations is thus O(1) per arc traversal plus O(n) per heap. Since there are n heaps, this time totals O(1) per arc traversal plus O(n2).

To analyze the algorithm, we begin by bounding the total number of arc traversals, thereby proving termination. Next we prove correctness. Finally we bound the running time.
Lemma 5 While the graph remains acyclic, the insertion algorithm maintains Invariant 2.
Proof Invariant 2 holds initially. Suppose the insertion of an arc (v, w) does not create a cycle. Traversal Step 2 is the only place vertex levels increase. If k(y) increases to
[image: image112.wmf]()1,

kx

+

 EMBED Equation.DSMT4 [image: image113.wmf]()1()1(),

sizeysizexkx

³+³+

 maintaining Invariant 2. The more interesting case is when
[image: image114.wmf]1

()32

i

i

cy

+

=×

 and k(y) increases to
[image: image115.wmf]()32.

i

i

by

+×

 Each of the increases to
[image: image116.wmf]()

i

cy

 since it was last zero is caused by the traversal of an arc (z, y). When
[image: image117.wmf]()

i

cy

was last zero,
[image: image118.wmf]1

()max{0,()2}.

i

i

byky

+

=-

 Since k(y) cannot decrease,
[image: image119.wmf]()()()

i

bykzsizez

<£

 when this traversal of (z, y) occurs, since at this time
[image: image120.wmf]()()min{(),

kykzky

-<

 EMBED Equation.DSMT4 [image: image121.wmf]1

2}.

i

+

 We consider two cases. If there were at least
[image: image122.wmf]32

i

×

 traversals of distinct arcs (z, y) since
[image: image123.wmf]()

i

cy

 was last zero, then
[image: image124.wmf]()()32

i

i

sizeyby

³+×

 by Lemma 4, and the increase in k(y) maintains Invariant 2. If not, by the pigeonhole principle there were at least three traversals of a single arc (z, y) since
[image: image125.wmf]()

i

cy

was last zero. When each traversal happens,
[image: image126.wmf]()()2,

i

kykz

-³

 but each of the second and third traversals cannot happen until k(z) increases to at least the value of k(y) at the previous traversal. This implies that when the third traversal happens,
[image: image127.wmf]()()32,

i

i

kybv

³+×

so k(y) will not in fact increase as a result of this traversal.
[image: image128.wmf]W

Lemma 6. If the insertion of an arc (v, w) creates a cycle, the insertion algorithm maintains the invariant that
[image: image129.wmf]()(),

kvsizevn

£+

where sizes are before the addition of (v, w).
Proof. Before the insertion of (v, w), Invariant 2 holds. Traversal of the arc (v, w) can increase k(v) by at most n, so the desired invariant holds after this traversal. Every subsequent traversal is of an arc other than (v, w): to traverse (v, w), an arc into v must be traversed, which results in the reporting of a cycle. Thus the subsequent traversals are of arcs in the acylic graph before the addition of (v, w). The proof of Lemma 5 extends to prove that these traversals maintain the desired invariant: Lemma 4 holds if the size function is replaced by the size plus any constant, in particular by the size plus n.
[image: image130.wmf]W

Theorem 3 The total number of arc traversals is
[image: image131.wmf]2

O(log).

nn

Proof By Lemmas 5 and 6, every label k(v), and hence every bound
[image: image132.wmf](),

i

bv

 remains below 2n. Every arc traversal increases a vertex level or increases a count. The number of level increases is O(n2). Consider a count
[image: image133.wmf]().

i

cy

 Each time
[image: image134.wmf]()

i

cy

 is reset to zero from
[image: image135.wmf]1

32,

i

+

×

[image: image136.wmf]()

i

bv

 increases by at least 2i. Since
[image: image137.wmf]()2,

i

bvn

£

 the total amount by which
[image: image138.wmf]()

i

cy

 can decrease as a result of being reset is at most 12n. Since
[image: image139.wmf]()

i

cv

 starts at zero and cannot exceed 4n, the total number of times
[image: image140.wmf]()

i

cv

 increases is at most 16n. Summing over all counts for all vertices gives a bound of
[image: image141.wmf]2

O(log)

nn

 on the number of count increases and hence on the number of arc traversals.
[image: image142.wmf]W

Theorem 4 If the insertion of an arc (v, w) creates a cycle, the insertion algorithm stops and reports a cycle. If not, the insertion algorithm maintains the invariant that k is a weak topological numbering.

Proof. By Theorem 3 the algorithm terminates. A straightforward induction shows that every arc (x, y) traversed by the insertion algorithm is such that x is reachable from v, so if the algorithm stops and reports a cycle, there is one. Suppose the insertion of (v, w) creates a cycle. Before the insertion of (v, w), k is a weak topological numbering, so the path from w to v existing before the addition of (v, w) has vertices in strictly increasing order. Thus v has the largest level on the path. A straightforward induction shows that the algorithm will eventually traverse every arc on the path and report a cycle, unless it reports another cycle first.
Suppose the insertion of (v, w) does not create a cycle. Before the addition, k is a weak topological numbering. The algorithm maintains the invariant that every arc (x, y) such that
[image: image143.wmf]()()

kxky

³

is either on A or is the arc being processed. It follows that when A is empty, k is a weak topological numbering.
[image: image144.wmf]W

Theorem 5 The algorithm runs in
[image: image145.wmf]2

O(log)

nn

total time.
Proof The running time is O(1) per arc traversal plus O(n2). This is
[image: image146.wmf]2

O(log)

nn

by Theorem 3.
[image: image147.wmf]W

The space needed by the algorithm is
[image: image148.wmf]O(log)

nnm

+

for the levels, bounds, and counts, and O(n2) for the n heaps. Storing the heaps in hash tables reduces their total space to O(m) but makes the algorithm randomized. By using k levels of buckets to store the heaps, the space for them can be reduced to
[image: image149.wmf]11/

O()

k

nm

+

+

with a time per heap operation of O(k). For
[image: image150.wmf]2,

k

=

 the space bound is O(m) if
[image: image151.wmf]1/2

/();

mnn

=W

 if not, the sparse algorithm presented in Section 2 is faster.
_1317190699.unknown

_1317447881.unknown

_1317450215.unknown

_1317450688.unknown

_1317451021.unknown

_1317453009.unknown

_1317457820.unknown

_1317457848.unknown

_1317457885.unknown

_1317453342.unknown

_1317453373.unknown

_1317453194.unknown

_1317451126.unknown

_1317451204.unknown

_1317451233.unknown

_1317451242.unknown

_1317451191.unknown

_1317451083.unknown

_1317451096.unknown

_1317451049.unknown

_1317450778.unknown

_1317450957.unknown

_1317450992.unknown

_1317450800.unknown

_1317450726.unknown

_1317450750.unknown

_1317450705.unknown

_1317450472.unknown

_1317450644.unknown

_1317450665.unknown

_1317450513.unknown

_1317450371.unknown

_1317450451.unknown

_1317450300.unknown

_1317449924.unknown

_1317449992.unknown

_1317450032.unknown

_1317450196.unknown

_1317450157.unknown

_1317450002.unknown

_1317449948.unknown

_1317449981.unknown

_1317449934.unknown

_1317448199.unknown

_1317448989.unknown

_1317449844.unknown

_1317448929.unknown

_1317448246.unknown

_1317448769.unknown

_1317448096.unknown

_1317448167.unknown

_1317448083.unknown

_1317194467.unknown

_1317196882.unknown

_1317197338.unknown

_1317204477.unknown

_1317205367.unknown

_1317206941.unknown

_1317207238.unknown

_1317207355.unknown

_1317206004.unknown

_1317205102.unknown

_1317199920.unknown

_1317204456.unknown

_1317197368.unknown

_1317197240.unknown

_1317197302.unknown

_1317196901.unknown

_1317195249.unknown

_1317196589.unknown

_1317196642.unknown

_1317196544.unknown

_1317195082.unknown

_1317195197.unknown

_1317194491.unknown

_1317192335.unknown

_1317193693.unknown

_1317193821.unknown

_1317194410.unknown

_1317193716.unknown

_1317193620.unknown

_1317193654.unknown

_1317193579.unknown

_1317192012.unknown

_1317192147.unknown

_1317192279.unknown

_1317192086.unknown

_1317190989.unknown

_1317191113.unknown

_1317127061.unknown

_1317128149.unknown

_1317190416.unknown

_1317190646.unknown

_1317190475.unknown

_1317128459.unknown

_1317128460.unknown

_1317128361.unknown

_1317127972.unknown

_1317128021.unknown

_1317128118.unknown

_1317128006.unknown

_1317127701.unknown

_1317127944.unknown

_1317127118.unknown

_1317125988.unknown

_1317126094.unknown

_1317126940.unknown

_1317126981.unknown

_1317126126.unknown

_1317126024.unknown

_1317126046.unknown

_1317126008.unknown

_1317125795.unknown

_1317125909.unknown

_1317125863.unknown

_1317125892.unknown

_1317125835.unknown

_1317124980.unknown

_1317125081.unknown

_1317124962.unknown

