COS 521 Notes on Routing in Regular Networks
Fall 2009

Tarjan

In these notes I describe routing on regular networks, such as are used in idealized (and realized) parallel computers and earlier in telephone networks. In general we are given a graph and a set of messages, each of which has an origin vertex and a destination vertex. We wish to send each message from its origin to its destination, along a path in the graph. All messages need to be sent concurrently, but vertices and/or edges of the graph may have capacity constraints that limit how many messages may use the same edge or vertex at the same time.
To focus our attention, we shall assume that the set of messages realizes a permutation or partial permutation of the vertices. That is, no two messages have the same origin or the same destination: each vertex is the origin of at most one message and the destination of at most one message. We shall also assume that each edge is capable of transmitting one message in each direction at a time. That is, we allow an edge to transmit messages in opposite directions simultaneously. Disallowing this only increases the total time to transmit all messages by a factor of two. Our results extend to more general situations, such as messages having common origins and/or destinations, edges having capacity higher than two, messages generated on-line (rather than being fixed in advance), and others.

Our routing model is as follows. Routing proceeds in steps. During a step, each vertex v examines the messages at v having a destination other than v and sends at most one such message along each of its outgoing arcs. Our goal is to devise a routing scheme that minimizes the number of steps needed to deliver all the messages to their destinations. To organize the message-passing, each outgoing edge at a vertex has a queue of messages to be sent along the edge. At each round, each vertex v adds each of the newly arrived messages whose destination is not v to one of its output queues, and then transmits at most one message from each output queue. We are interested in bounding the maximum queue size as well as the total routing time (number of steps).
We consider three related kinds of graphs. A binary hypercube of dimension n has vertices numbered 0 through
[image: image1.wmf]121.

n

N

-=-

 Two vertices are joined by an edge if and only if the binary representations of their numbers differ in exactly one bit. Thus there are
[image: image2.wmf]/2(lg)/2

NnNN

=

edges, and each vertex has degree
[image: image3.wmf]lg.

nN

=

 Note that this graph does not have constant degree 9independent of the number of vertices). A butterfly or shuffle-exchange graph of dimension n has vertices numbered by ordered pairs j, k for j from 0 through
[image: image4.wmf]1,

N

-

 k from 0 through n. Vertices j, k and
[image: image5.wmf],

j

¢

[image: image6.wmf]k

¢

are joined by an edge if
[image: image7.wmf]1

kk

¢

-=

 and either
[image: image8.wmf]jj

¢

=

or j and
[image: image9.wmf]j

¢

differ in exactly one bit in their binary representations, the k bit. A butterfly can be viewed as a binarized hypercube; a hypercube can be viewed as a contracted butterfly (contract all vertices with the same value of k and eliminate multiple edges and loops). The input, respectively output vertices of a butterfly are the vertices with
[image: image10.wmf]0

k

=

or
[image: image11.wmf],

kn

=

 respectively. A Beneš graph consists of two butterflies connected back-to-back, with their input vertices identified. The outputs of one butterfly are the inputs of the Beneš graph; the outputs of the other butterfly are the outputs of the Beneš graph. A Beneš graph of dimension n consists of two Beneš graphs of dimension
[image: image12.wmf]1

n

-

 (called its subgraphs) and sets of N inputs and N outputs, with input (output) j connected to inputs (outputs) j mod(N/2) of the two subgraphs. Any routing pattern on any of these three kinds of networks can be simulated on any of the others. For example, a routing pattern that sends messages from the inputs to the outputs of a Benes graph with no messages sent backwards can be mimicked on a butterfly by sending the messages from the inputs to the outputs and then back to the inputs.

Theorem 1. For any 1-1 mapping of the inputs to the outputs of a Beneš graph, there is a set of vertex-disjoint paths connecting the corresponding inputs with the corresponding outputs.

Proof. Consider any 1-1 mapping of inputs to outputs. We find the corresponding vertex-disjoint paths recursively. The first step is to hook up the inputs and outputs with the inputs and outputs of the two subgraphs in such a way that we can finish the job by finding routes within each subgraph independently, using recursion. We set up the outer-level connections incrementally. Consider any input x, to be connected to output y. Connect x to the corresponding input of the first subgraph and connect y to the corresponding output of the first subgraph. Now the “twin”
[image: image13.wmf]y

¢

 of y, namely (y + N/2) mod N, must be connected to the corresponding output of the second subgraph. Connect the input
[image: image14.wmf]x

¢

 to which
[image: image15.wmf]y

¢

 is to be connected to the corresponding input in the second subgraph. If
[image: image16.wmf]x

¢

is the twin of the original x, we are done with x and
[image: image17.wmf].

x

¢

 If not, the twin
[image: image18.wmf]x

¢¢

of
[image: image19.wmf]x

¢

must be connected to the corresponding input in the first subgraph. Continue making forced connections in this way until closing a cycle. Then choose a new input and repeat the process. Continue until all inputs and outputs are connected. Then use recursion to connect the appropriate inputs and outputs within the two subgraphs.

Theorem 1 is a classic result of “circuit switched” routing, which was needed in old-style telephone networks, in which each telephone conversation used a fixed path. No two paths could share a vertex (or at least not an edge), and a path did not change until the conversation was finished. Now we turn to “packet switched” routing, in which messages can share paths, although each link carries only one message at a time. We shall consider routing on a hypercube, but analogous results hold for butterfly and Beneš graphs.

Suppose we are given a permutation to be realized. A straightforward routing strategy is a greedy strategy: If the origin and destination of a message are x and y, respectively, the message is sent along the path formed by changing the bits of x to those of y one-at-a time, in fixed order, say left-to-right. That is, if
[image: image20.wmf]12

,,...,

n

xxxx

=

and
[image: image21.wmf]12

,,...,

n

yyyy

=

 in binary, the message is sent from x to
[image: image22.wmf]12

,,...,,

n

yxx

then to
[image: image23.wmf]123

,,,...,,

n

yyxx

 and so on, until reaching y. If
[image: image24.wmf]jj

xy

=

for some particular j, then that bit does not need to be corrected, shortening the path by a vertex. To send a message to its next vertex, it is added to the output queue of the appropriate edge. When several messages are in the same queue, any may be sent; the results we discuss do not depend on the strategy used to make this selection.

Our first observation is that there are natural permutations for which greedy routing is a very bad strategy, taking at least
[image: image25.wmf]/

Nn

 steps no matter what queuing discipline is used. Assume n is even, say
[image: image26.wmf]2.

nk

=

 Two bad permutations are transpose, which maps
[image: image27.wmf]122

,,...,

k

xxx

to
[image: image28.wmf]12212

,,...,,,,...,,

kkkk

xxxxxx

++

and bit reversal, which maps
[image: image29.wmf]12

,,...,

n

xxx

 to
[image: image30.wmf]11

,,...,.

nn

xxx

-

 For either of these permutations, consider the
[image: image31.wmf]2

k

 messages with origins of the form
[image: image32.wmf]12

,...,,

k

xxx

0, 0,…, 0. All these messages will get routed through vertex 0, 0,..., 0. At least one of the edges at this vertex will carry at least
[image: image33.wmf]2/

k

n

 messages, which takes at least
[image: image34.wmf]/

Nn

 steps.

Our goal is to get all the messages to their destinations in O(n) steps, for any permutation, using a simple, local routing scheme. Beneš routing (Theorem 1) accomplishes the goal, but the routing scheme is neither simple nor local. The bad example above does not depend on the specific network: on any low-degree network, for any oblivious routing scheme, namely one in which the route from an origin to a destination depends only on that origin and destination, and not on other pairs in the permutation to be routed, there will be bad permutations that take a long time to route.

Theorem 2. Consider any graph with vertex set V having
[image: image35.wmf]2

VN

=³

 vertices and maximum degree d, and any oblivious routing scheme on the graph. Some permutation takes at least
[image: image36.wmf]/

Nd

êú

ëû

steps.

Proof. Let
[image: image37.wmf]N/.

kd

êú

=

ëû

 Since
[image: image38.wmf]2,

N

³

 EMBED Equation.DSMT4 [image: image39.wmf](1)/.

kNd

£-

 There are
[image: image40.wmf](1)

NN

-

origin-destination pairs, each of which has one path used for sending messages, since the routing scheme is oblivious. For any fixed destination v, there are N – 1 such paths, one per origin. Let E(v) be the set of edges contained in at least k of these N – 1 paths, and let V(v) be the set of vertices incident to edges in E(v). Since
[image: image41.wmf](1)/

kNd

£-

 and v is incident to at most d edges, at least one edge incident to v is in E(v), so v is in V(v). We claim that
[image: image42.wmf]()(1)(1)()

VVvkdVv

-£--

. Indeed, there are
[image: image43.wmf]()

VVv

-

 routing paths from vertices in
[image: image44.wmf]()

VVv

-

 to v, each of which must use an edge connecting a vertex in
[image: image45.wmf]()

VVv

-

with a vertex in V(v). None of these edges is in E(v) by the definition of V(v), so each one intersects at most
[image: image46.wmf]1

k

-

 of the paths. Each vertex in V(v) is incident to at most
[image: image47.wmf]1

d

-

 such edges, since one of its incident edges is in E(v). Thus there are at most
[image: image48.wmf](1)()

dVv

-

 such edges, and at most
[image: image49.wmf](1)(1)()

kdVv

--

paths, which gives the claim.

The claim implies
[image: image50.wmf]()()(1(1)(1))()()2().

NVVvVvkdVvkdVvkdEv

=-+£+--££

That is,
[image: image51.wmf]()/(2)/2.

EvNkdN

³³

 Summing over all N vertices v gives
[image: image52.wmf]3/2

()/2.

v

EvN

³

å

 Since there are at most
[image: image53.wmf]/2

Nd

edges, there must be some edge e that is in E(v) for at least
[image: image54.wmf]/

Ndk

³

different vertices v. For each of these vertices v there are at least k different origins x such that the path from x to v contains e. Choose k different such vertices v as destinations; for each one, choose a different origin x such that the path from x to that v contains e. Since there are k possible choices of x for each v, these choices can be made successively and distinctly for each v. This gives k origin-destination pairs, all of whose paths use e. But then the routing scheme must take at least
[image: image55.wmf]/

kNd

êú

=

ëû

steps, no matter what queuing discipline is used.

To overcome the limitation of Theorem 2, it suffices to use randomization, as proposed by Valiant. To route a given permutation, we choose a random intermediate vertex zi for each origin-destination pair xi, yi. We route in two phases. First, we send each message from xi to zi by using greedy routing. Then we send each message from zi to yi, again using greedy routing. Note that the origin-destination pairs for each phase do not necessarily form a permutation (there can be many duplicate vertices zi), yet both phases complete within O(n) steps on a hypercube (or on a butterfly) with high probability. That each phase completes within O(n) steps with high probability is equivalent to the claim that greedy routing routes a random permutation in O(n) steps with high probability (even though it routes certain bad permutations slowly). To prove this we use the following lemma.
Lemma 1. Consider a message whose route contains k edges and shares an edge with d other routes, such that the intersection of each other route with the given one consists of a single path. (The routes join, continue together, and split, never to join again.) Then the message reaches its destination in at most
[image: image56.wmf]kd

+

steps, no matter what queuing discipline is used.

Proof. For a given k and d, consider a worst-case example. Such an example becomes no better if all the routes have the same destination: converting any route that branches off early into one that continues to the destination of the slow message cannot decrease the number of steps. Now each message, once it intersects the path of the slow message, is indistinguishable from any other such message. Consider each time at which another message is sent along an edge instead of the slow message. Each time this happens, give the message sent forward priority over all other messages at each future decision. This is equivalent to having the message sent forward switch identities with any message that proceeds instead of it. Since the slow message can only be blocked once per step, and since each such blocking is on an edge behind all high-priority messages, there is at most one high-priority message in each edge queue, and these messages never interfere with each other. Furthermore, once a message becomes high-priority it can never again block the slow message. Thus the slow message can suffer at most one step of delay for each other message. This gives the lemma.
Theorem 3. On a hypercube, each phase of Valiant’s algorithm finishes within O(n) steps with probability
[image: image57.wmf]1O(1/),

c

n

-

 where c can be made an arbitrarily large constant (at the expense of increasing the constant factor in the bound on the number of steps).

Proof. The two phases of Valiant’s algorithm are entirely symmetric, so we need analyze only one of them. Consider the first phase. Let x, y be some origin-destination pair. We estimate the number of other pairs
[image: image58.wmf],

xy

¢¢

 whose paths share at least one edge with the path of x, y. Suppose the paths share an edge corresponding to flipping bit j. Then y and
[image: image59.wmf]y

¢

 must agree on bits 0 through j, and x and
[image: image60.wmf]x

¢

must agree on bits j through n. The chance that a given pair
[image: image61.wmf],

xy

¢¢

 has
[image: image62.wmf]x

¢

agreeing with x on the first
[image: image63.wmf]1

j

+

 bits is
[image: image64.wmf]1

1/2.

j

+

 The number of possible pairs
[image: image65.wmf],

xy

¢¢

 such that
[image: image66.wmf]y

¢

 agrees with y on the last
[image: image67.wmf]nj

-

 bits is 2j. Thus the expected number of paths that intersect that of x, y on the edge that flips bit j is ½. Summing over j gives
[image: image68.wmf]/2

n

as an upper bound on the expected number of paths that share at least one edge with the path of x, y.

More precisely, the number of paths that share at least one edge with the path of x, y is a sum of 0, 1 independent random variables, one for each path other than that of x, y. The expectation of this sum is at most
[image: image69.wmf]/2.

n

 Applying Chernoff’s upper tail bound tells us that the number of other paths intersecting that of x, y in at least one edge is O(n) with probability
[image: image70.wmf]1

1O(1/).

c

N

+

-

 Summing over all n pairs gives a probability of
[image: image71.wmf]1O(1/).

c

N

-

 that every path shares an edge with at most O(n) other paths. The theorem then follows from Lemma 1.
Instead of using Lemma 1, we can complete the proof of Theorem 3 by using Chernoff’s bound a second time, to show that, for any particular message path, the total number of edge intersections with other paths is O(n) with probability
[image: image72.wmf]1

1O(1/).

c

N

+

-

 Such a bound follows from the observation that, given that another path intersects the given path, the number of common edges other than the first has a negative binomial distribution: the chance of a second edge in common is at most ½, that of a third edge in common is at most ¼, and so on.

[image: image73.wmf]
5

_1321266368.unknown

_1321266757.unknown

_1321427747.unknown

_1321440063.unknown

_1321440168.unknown

_1321440321.unknown

_1321441070.unknown

_1321441071.unknown

_1321441069.unknown

_1321440320.unknown

_1321440080.unknown

_1321437054.unknown

_1321437389.unknown

_1321437002.unknown

_1321427787.unknown

_1321266985.unknown

_1321267263.unknown

_1321268633.unknown

_1321268683.unknown

_1321267340.unknown

_1321267498.unknown

_1321267292.unknown

_1321267060.unknown

_1321267188.unknown

_1321267012.unknown

_1321266806.unknown

_1321266851.unknown

_1321266976.unknown

_1321266769.unknown

_1321266678.unknown

_1321266723.unknown

_1321266746.unknown

_1321266695.unknown

_1321266515.unknown

_1321266527.unknown

_1321266403.unknown

_1321251080.unknown

_1321257049.unknown

_1321265166.unknown

_1321265228.unknown

_1321266337.unknown

_1321265577.unknown

_1321265204.unknown

_1321257262.unknown

_1321257312.unknown

_1321257419.unknown

_1321257545.unknown

_1321265078.unknown

_1321257472.unknown

_1321257334.unknown

_1321257188.unknown

_1321257236.unknown

_1321252297.unknown

_1321254396.unknown

_1321256981.unknown

_1321254367.unknown

_1321251397.unknown

_1321251420.unknown

_1321251372.unknown

_1321251342.unknown

_1321251352.unknown

_1321251276.unknown

_1321250902.unknown

_1321251028.unknown

_1321251044.unknown

_1321250929.unknown

_1321250728.unknown

_1321250833.unknown

_1321250714.unknown

