COS 521                   A Riff* on the Goldberg-Rao Maximum Flow Algorithm
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These notes describe a version of the Goldberg-Rao maximum flow algorithm and a proof of its time bound, along with a discussion of how it differs from the original algorithm.

The algorithm assumes integer arc capacities.  It maintains a flow f and a real value
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 The latter is used to classify the residual arcs: a residual arc is large, medium, or small if its residual capacity is at least 
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 at least delta but less than 
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 or less than 
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 respectively.  Each arc has a length, which is zero if is large, one if it is medium or small, or 
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 if it is not residual. Given the arc lengths, the distance 
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of a vertex v is the length of a shortest path from v to t.

The algorithm begins with f equal to the zero flow and 
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 equal to the smallest power of two greater than the maximum arc capacity.  Then it computes 
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for every vertex v.  Finally, it repeats the following step until 
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(there is no augmenting path):

General Step: If 
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 replace delta by 
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and recompute 
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for every vertex v.  Otherwise, proceed as follows.  Let 
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 be the network induced by the set of residual arcs 
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is not small}, with each arc having a capacity equal to the minimum of its residual capacity and delta.  Form 
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 from 
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by contracting each strong component in 
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to a single vertex whose capacity is equal to delta.  Find a blocking flow 
[image: image19.wmf]f

¢¢

 on 
[image: image20.wmf]G.

¢¢

 Extend 
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 to a flow f' on 
[image: image22.wmf]G

¢

 by routing flow through each strong component.  Add  f' to f.  Recompute d for every vertex v.

Lemma 1.   There are at most 
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 distinct values of 
[image: image24.wmf]D

 during the running of the algorithm.

Proof.   The initial value of 
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 is at most 
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  Once 
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all residual arcs are large, because the algorithm maintains flow integrality. Thus 
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remains equal to 0, and 
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 remains equal to 1/2, until 
[image: image30.wmf]()

ds

=¥

 and the algorithm stops.  
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Lemma 2.   Each iteration of the general step either halves 
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, or increases the value of  f  by at least 
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 without changing 
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or increases 
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by at least one.

Proof.   Consider an iteration of the general step that does not change 
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.  Let l and 
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 be the length functions before and after the step, and the distance functions before and after the step, respectively.  We claim that
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 for any arc 
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The definition of d implies that 
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  Thus (1) holds unless 
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 But this can happen only if 
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is in 
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 which implies 
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 from which (1) follows by the non-negativity of 
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Since 
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(1) implies by induction on the number of arcs on the shortest 
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 path from v to t that 
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 In particular, 
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Now suppose the step increases the value of  f  by less than 
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.  Then 
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saturates at least one arc on each path from s to t in 
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 which implies that 
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 saturates at least one arc on each path from s to t in 
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 that is, 
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is blocking on 
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  To complete the proof of the lemma, we need to show that 
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  This is immediate if 
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  Suppose not.  Consider a shortest 
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 path 
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 from s to t.  Because 
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 is blocking on G, this path contains at least one arc 
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 not in 
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  We shall show
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It must be the case that 
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 otherwise 
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 would be in 
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(2) holds.  Suppose 
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 Then (2) holds unless 
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 that is, 
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 is large after the step.  But this implies that 
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 is medium or large before the step, since the step increases 
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 by at most 
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.  Then 
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 is in 
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 a contradiction.  Thus (2) holds.

Combining (2) with inequality (1) for the other arcs on 
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gives 
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Lemma 3.  The number of iterations of the general step is 
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Proof.   Before 
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 is halved for the first time, all arcs are small, 
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 and the argument in the proof of Lemma 2 implies that every iteration of the general step increases 
[image: image84.wmf]()

ds

by at least one.  The number of times 
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 can increase between changes of 
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 is at most 
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 We shall show that between changes of 
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 the number of times f can increase without 
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 changing is at most 
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 The lemma then follows from Lemma 1.

Each change of f without an increase in 
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 happens after the first change in 
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.  Consider the state just before a change in 
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.  The change occurs because 
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  Each positive integer 
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 defines a canonical cut whose source side is 
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 Any residual arc crossing a canonical cut must be small, and a small arc can cross at most one canonical cut.  Suppose 
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  Since there are at least 
[image: image98.wmf]l

 canonical cuts, at least one has no more than 
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 residual arcs crossing it.  Such a cut has a residual capacity of at most 
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  Suppose on the other hand that 
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  There must be a value of k such that the number of vertices v with 
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equal to k or 
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  The number of arcs crossing the canonical cut defined by k is at most 
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 hence the residual capacity of the cut is at most 
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We conclude that in either case there is a cut whose residual capacity is at most 
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 hence the flow value can increase by at most 
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  This means that after 
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 is halved once but before it is halved twice, the number of  steps that can change f without increasing 
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 is at most 
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Theorem 1.  With appropriate implementations of the various parts of the algorithm, the running time of the algorithm is 
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O(mlog(n/m)logU).
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Proof.   Computing 
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 for every vertex v takes 
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time by a modified backward breadth-first search that preferentially traverses arcs of zero length.  (Exercise: implement such a search, using an steque (output-restricted deque) to store vertices reached but not yet scanned.)  Forming 
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takes 
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time.  Vertex capacities in 
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can be converted into arc capacities by splitting each vertex v representing a strong component into two vertices 
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and 
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with an arc from 
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 to 
[image: image122.wmf]v

¢¢

 of capacity 
[image: image123.wmf]D

, and converting arcs entering v into arcs entering 
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 and arcs leaving v into arcs leaving 
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 Finding a blocking flow on (the modified) 
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takes 
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time by the blocking flow algorithm of Sleator and Tarjan, which uses dynamic trees.  Extending the flow 
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 to form 
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 takes 
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time by the (best) solution to Problem 3 on Problem Set 1.  Thus one iteration of the general step takes 
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time, dominated by the time to find a blocking flow on an acyclic network.  The theorem follows from Lemma 3.   
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This algorithm simplifies the original by not maintaining an explicit estimate of the residual flow value.  It also allows more arcs in 
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 (In the original, a medium arc is only a candidate for 
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 if its reversal is large.)  Finally, it allows the flow increments to be larger by imposing an upper bound of 
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on the flow through each arc and each strong component rather than imposing an overall bound on the incremental flow.

The algorithm is still somewhat complicated, which seems required by the subtleties of the analysis.  It would be nice to have a preflow-push version of the algorithm, or a purer augmenting-path version of the algorithm, or one that avoids explicit contraction of strong components.

*Riff (from the American Heritage Dictionary): 1. Music A short rhythmic phrase, especially one that is repeated in improvisation.  2. A clever or inventive commentary or remark: "Those little riffs that had seemed to have such sparkle over drinks... look all too embarrassing in cold print." (John Richardson) 
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