COS 521 A Riff* on the Goldberg-Rao Maximum Flow Algorithm

Fall 2009
Tarjan
These notes describe a version of the Goldberg-Rao maximum flow algorithm and a proof of its time bound, along with a discussion of how it differs from the original algorithm.

The algorithm assumes integer arc capacities. It maintains a flow f and a real value
[image: image1.wmf].

D

 The latter is used to classify the residual arcs: a residual arc is large, medium, or small if its residual capacity is at least
[image: image2.wmf]2,

D

 at least delta but less than
[image: image3.wmf]2,

D

 or less than
[image: image4.wmf],

D

 respectively. Each arc has a length, which is zero if is large, one if it is medium or small, or
[image: image5.wmf]¥

 if it is not residual. Given the arc lengths, the distance
[image: image6.wmf]()

dv

of a vertex v is the length of a shortest path from v to t.

The algorithm begins with f equal to the zero flow and
[image: image7.wmf]D

 equal to the smallest power of two greater than the maximum arc capacity. Then it computes
[image: image8.wmf]()

dv

for every vertex v. Finally, it repeats the following step until
[image: image9.wmf]()

ds

=¥

(there is no augmenting path):

General Step: If
[image: image10.wmf]2/31/2

()min{,},

dsnm

l

>=

 replace delta by
[image: image11.wmf]/2

D

and recompute
[image: image12.wmf]()

dv

for every vertex v. Otherwise, proceed as follows. Let
[image: image13.wmf]G

¢

 be the network induced by the set of residual arcs
[image: image14.wmf]{(,)()()or()()

vwdvdwdvdw

>=

and
[image: image15.wmf](,)

vw

is not small}, with each arc having a capacity equal to the minimum of its residual capacity and delta. Form
[image: image16.wmf]G

¢¢

 from
[image: image17.wmf]G

¢

by contracting each strong component in
[image: image18.wmf]G

¢

to a single vertex whose capacity is equal to delta. Find a blocking flow
[image: image19.wmf]f

¢¢

 on
[image: image20.wmf]G.

¢¢

 Extend
[image: image21.wmf]f

¢¢

 to a flow f' on
[image: image22.wmf]G

¢

 by routing flow through each strong component. Add f' to f. Recompute d for every vertex v.

Lemma 1. There are at most
[image: image23.wmf]lg3

U

+

 distinct values of
[image: image24.wmf]D

 during the running of the algorithm.

Proof. The initial value of
[image: image25.wmf]D

 is at most
[image: image26.wmf]lg1.

U

+

 Once
[image: image27.wmf]1/2,

D=

all residual arcs are large, because the algorithm maintains flow integrality. Thus
[image: image28.wmf]()

ds

remains equal to 0, and
[image: image29.wmf]D

 remains equal to 1/2, until
[image: image30.wmf]()

ds

=¥

 and the algorithm stops.
[image: image31.wmf]W

Lemma 2. Each iteration of the general step either halves
[image: image32.wmf]D

, or increases the value of f by at least
[image: image33.wmf]D

 without changing
[image: image34.wmf](),

ds

or increases
[image: image35.wmf]()

ds

by at least one.

Proof. Consider an iteration of the general step that does not change
[image: image36.wmf]D

. Let l and
[image: image37.wmf],

l

¢

 and d and
[image: image38.wmf],

d

¢

 be the length functions before and after the step, and the distance functions before and after the step, respectively. We claim that

[image: image39.wmf]()(,)()

dvlvwdw

¢

£+

 for any arc
[image: image40.wmf](,)

vw

(1)
The definition of d implies that
[image: image41.wmf]()(,)().

dvlvwdw

£+

 Thus (1) holds unless
[image: image42.wmf](,)(.).

lvwlvw

¢

<

 But this can happen only if
[image: image43.wmf](,)

wv

is in
[image: image44.wmf]G,

¢

 which implies
[image: image45.wmf]()(),

dvdw

£

 from which (1) follows by the non-negativity of
[image: image46.wmf].

l

¢

Since
[image: image47.wmf]()0,

dt

=

(1) implies by induction on the number of arcs on the shortest
[image: image48.wmf]length

l

¢

-

 path from v to t that
[image: image49.wmf]()().

dvdv

¢

£

 In particular,
[image: image50.wmf]()().

dsds

¢

£

Now suppose the step increases the value of f by less than
[image: image51.wmf]D

. Then
[image: image52.wmf]f

¢¢

saturates at least one arc on each path from s to t in
[image: image53.wmf]G,

¢¢

 which implies that
[image: image54.wmf]f

¢

 saturates at least one arc on each path from s to t in
[image: image55.wmf]G;

¢

 that is,
[image: image56.wmf]f

¢

is blocking on
[image: image57.wmf]G.

¢

 To complete the proof of the lemma, we need to show that
[image: image58.wmf]()().

dsds

¢

>

 This is immediate if
[image: image59.wmf]().

ds

¢

=¥

 Suppose not. Consider a shortest
[image: image60.wmf]length

l

¢

-

 path
[image: image61.wmf]G

 from s to t. Because
[image: image62.wmf]f

¢

 is blocking on G, this path contains at least one arc
[image: image63.wmf](,)

xy

 not in
[image: image64.wmf]G.

¢

 We shall show

[image: image65.wmf]()(,)()

dxlxydy

¢

<+

(2)
It must be the case that
[image: image66.wmf]()();

dxdy

£

 otherwise
[image: image67.wmf](,)

xy

 would be in
[image: image68.wmf]G.

¢

 If
[image: image69.wmf]()(),

dxdy

<

(2) holds. Suppose
[image: image70.wmf]()().

dxdy

=

 Then (2) holds unless
[image: image71.wmf](,)0;

lxy

¢

=

 that is,
[image: image72.wmf](,)

xy

 is large after the step. But this implies that
[image: image73.wmf](,)

xy

 is medium or large before the step, since the step increases
[image: image74.wmf](,)

fyx

 by at most
[image: image75.wmf]D

. Then
[image: image76.wmf](,)

xy

 is in
[image: image77.wmf]G,

¢

 a contradiction. Thus (2) holds.

Combining (2) with inequality (1) for the other arcs on
[image: image78.wmf]G

gives
[image: image79.wmf]()().

dsds

¢

<

[image: image80.wmf]W

Lemma 3. The number of iterations of the general step is
[image: image81.wmf]O(log).

U

l

Proof. Before
[image: image82.wmf]D

 is halved for the first time, all arcs are small,
[image: image83.wmf],

GG

¢¢¢

=

 and the argument in the proof of Lemma 2 implies that every iteration of the general step increases
[image: image84.wmf]()

ds

by at least one. The number of times
[image: image85.wmf]()

ds

 can increase between changes of
[image: image86.wmf]D

 is at most
[image: image87.wmf]2.

l

+

 We shall show that between changes of
[image: image88.wmf]D

 the number of times f can increase without
[image: image89.wmf]()

ds

 changing is at most
[image: image90.wmf]2.

l

 The lemma then follows from Lemma 1.

Each change of f without an increase in
[image: image91.wmf]()

ds

 happens after the first change in
[image: image92.wmf]D

. Consider the state just before a change in
[image: image93.wmf]D

. The change occurs because
[image: image94.wmf]().

ds

l

>

 Each positive integer
[image: image95.wmf]()

kds

£

 defines a canonical cut whose source side is
[image: image96.wmf]{()}.

vdvk

³

 Any residual arc crossing a canonical cut must be small, and a small arc can cross at most one canonical cut. Suppose
[image: image97.wmf]1/2

.

m

l

=

 Since there are at least
[image: image98.wmf]l

 canonical cuts, at least one has no more than
[image: image99.wmf]/

m

l

 residual arcs crossing it. Such a cut has a residual capacity of at most
[image: image100.wmf]/.

m

ll

D=D

 Suppose on the other hand that
[image: image101.wmf]2/3

.

n

l

=

 There must be a value of k such that the number of vertices v with
[image: image102.wmf]()

dv

equal to k or
[image: image103.wmf]1

k

-

 is at most
[image: image104.wmf]2/.

n

l

 The number of arcs crossing the canonical cut defined by k is at most
[image: image105.wmf]2

(/);

n

ll

=

 hence the residual capacity of the cut is at most
[image: image106.wmf].

l

D

We conclude that in either case there is a cut whose residual capacity is at most
[image: image107.wmf];

l

D

 hence the flow value can increase by at most
[image: image108.wmf].

l

D

 This means that after
[image: image109.wmf]D

 is halved once but before it is halved twice, the number of steps that can change f without increasing
[image: image110.wmf]()

ds

 is at most
[image: image111.wmf]2.

l

[image: image112.wmf]W

Theorem 1. With appropriate implementations of the various parts of the algorithm, the running time of the algorithm is
[image: image113.wmf]2

O(mlog(n/m)logU).

l

Proof. Computing
[image: image114.wmf]()

dv

 for every vertex v takes
[image: image115.wmf]O()

m

time by a modified backward breadth-first search that preferentially traverses arcs of zero length. (Exercise: implement such a search, using an steque (output-restricted deque) to store vertices reached but not yet scanned.) Forming
[image: image116.wmf]G

¢¢

takes
[image: image117.wmf]O()

m

time. Vertex capacities in
[image: image118.wmf]G

¢¢

can be converted into arc capacities by splitting each vertex v representing a strong component into two vertices
[image: image119.wmf]v

¢

and
[image: image120.wmf]v

¢¢

with an arc from
[image: image121.wmf]v

¢

 to
[image: image122.wmf]v

¢¢

 of capacity
[image: image123.wmf]D

, and converting arcs entering v into arcs entering
[image: image124.wmf]v

¢

 and arcs leaving v into arcs leaving
[image: image125.wmf].

v

¢¢

 Finding a blocking flow on (the modified)
[image: image126.wmf]G

¢¢

takes
[image: image127.wmf]2

O(log(/m))

mn

time by the blocking flow algorithm of Sleator and Tarjan, which uses dynamic trees. Extending the flow
[image: image128.wmf]f

¢¢

 to form
[image: image129.wmf]f

¢

 takes
[image: image130.wmf]O()

m

time by the (best) solution to Problem 3 on Problem Set 1. Thus one iteration of the general step takes
[image: image131.wmf]2

O(log(/m))

mn

time, dominated by the time to find a blocking flow on an acyclic network. The theorem follows from Lemma 3.
[image: image132.wmf]W

This algorithm simplifies the original by not maintaining an explicit estimate of the residual flow value. It also allows more arcs in
[image: image133.wmf]G.

¢

 (In the original, a medium arc is only a candidate for
[image: image134.wmf]G

¢

 if its reversal is large.) Finally, it allows the flow increments to be larger by imposing an upper bound of
[image: image135.wmf]D

on the flow through each arc and each strong component rather than imposing an overall bound on the incremental flow.

The algorithm is still somewhat complicated, which seems required by the subtleties of the analysis. It would be nice to have a preflow-push version of the algorithm, or a purer augmenting-path version of the algorithm, or one that avoids explicit contraction of strong components.

*Riff (from the American Heritage Dictionary): 1. Music A short rhythmic phrase, especially one that is repeated in improvisation. 2. A clever or inventive commentary or remark: "Those little riffs that had seemed to have such sparkle over drinks... look all too embarrassing in cold print." (John Richardson)

1

_1252740668.unknown

_1252741950.unknown

_1252750547.unknown

_1253346982.unknown

_1253354290.unknown

_1253354340.unknown

_1253354517.unknown

_1253354524.unknown

_1253354350.unknown

_1253354309.unknown

_1253354323.unknown

_1253347259.unknown

_1253347458.unknown

_1253347588.unknown

_1253347785.unknown

_1253347505.unknown

_1253347587.unknown

_1253347435.unknown

_1253347212.unknown

_1253347226.unknown

_1253347058.unknown

_1252750796.unknown

_1252750911.unknown

_1252751263.unknown

_1252751306.unknown

_1252751352.unknown

_1252751370.unknown

_1252751639.unknown

_1252751315.unknown

_1252751290.unknown

_1252751242.unknown

_1252750986.unknown

_1252751148.unknown

_1252750891.unknown

_1252750900.unknown

_1252750890.unknown

_1252750667.unknown

_1252750761.unknown

_1252750702.unknown

_1252750745.unknown

_1252750630.unknown

_1252750644.unknown

_1252750601.unknown

_1252743118.unknown

_1252743334.unknown

_1252750491.unknown

_1252750514.unknown

_1252743335.unknown

_1252743297.unknown

_1252743333.unknown

_1252743195.unknown

_1252743233.unknown

_1252742675.unknown

_1252742810.unknown

_1252743084.unknown

_1252742761.unknown

_1252742577.unknown

_1252742635.unknown

_1252742010.unknown

_1252742096.unknown

_1252741213.unknown

_1252741806.unknown

_1252741906.unknown

_1252741929.unknown

_1252741890.unknown

_1252741843.unknown

_1252741858.unknown

_1252741592.unknown

_1252741752.unknown

_1252741753.unknown

_1252741629.unknown

_1252741494.unknown

_1252741519.unknown

_1252741287.unknown

_1252740926.unknown

_1252741116.unknown

_1252741188.unknown

_1252741158.unknown

_1252741024.unknown

_1252741049.unknown

_1252741102.unknown

_1252741012.unknown

_1252740745.unknown

_1252740912.unknown

_1252740684.unknown

_1252740700.unknown

_1252740382.unknown

_1252740519.unknown

_1252740608.unknown

_1252740619.unknown

_1252740574.unknown

_1252740405.unknown

_1252740430.unknown

_1252740140.unknown

_1252740347.unknown

_1252740370.unknown

_1252740095.unknown

_1252740106.unknown

_1252740083.unknown

