@

Sockets



Client-Server Communication

* Client “sometimes on” e Server is “always on”

— Initiates a request to the — Services requests from many
server when interested client hosts

— E.g., Web browser on your — E.g., Web server for the
laptop or cell phone www.cnn.com Web site

— Doesn’t communicate — Doesn’t initiate contact with
directly with other clients the clients

— Needs to know server’s — Needs fixed, known address
address




Client and Server Processes

° Program VS. Process
— Program: collection of code
— Process: a running program on a host

e Communication between processes

— Same end host: inter-process communication
* Governed by the operating system on the end host

— Different end hosts: exchanging messages
* Governed by the network protocols

* Client and server processes
— Client process: process that initiates communication
— Server process: process that waits to be contacted



Delivering the Data: Division of Labor

* Network
— Deliver data packet to the destination host
— Based on the destination IP address
* Operating system @
— Deliver data to the destination socket
— Based on the destination port number (e.g., 80)

* Application
— Read data from and write data to the socket
— Interpret the data (e.g., render a Web page)



Socket: End Point of Communication

* Sending message from one process to another
— Message must traverse the underlying network

* Process sends and receives through a “socket”
— In essence, the doorway leading in/out of the house

* Socket as an Application Programming Interface
— Supports the creation of network applications

User process User process

socket socket

Operating Operating
System System




ldentifying the Receiving Process

* Sending process must identify the receiver
— The receiving end host machine
— The specific socket in a process on that machine

* Receiving host
— Destination address that uniquely identifies the host
— An IP address is a 32-bit quantity

* Receiving socket
— Host may be running many different processes
— Destination port that uniquely identifies the socket
— A port number is a 16-bit quantity



Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
f""""""""""""'5 128.2.1 94.242:80

i (i.e., the Web server)

Service request for : ;
128.2.194.242:7
i (i.e., the echo server) : port 80)
Echo server



Port Numbers are Unique per Host

* Port number uniquely identifies the socket
— Cannot use same port number twice with same address
— Otherwise, the OS can’t demultiplex packets correctly

* Operating system enforces uniqueness

— OS keeps track of which port numbers are in use
— Doesn’t let the second program use the port number



UNIX Socket API

e Socket interface

— Originally provided in Berkeley UNIX
— Later adopted by all popular operating systems
— Simplifies porting applications to different OSes

* |In UNIX, everything is like a file
— All input is like reading a file, output like writing
— File is represented by an integer file descriptor

* APl implemented as system calls
— E.g., connect, read, write, close, ...



Typical Client Program

* Prepare to communicate
— Create a socket
— Determine server address and port number
— Initiate the connection to the server

* Exchange data with the server
— Write data to the socket
— Read data from the socket
— Do stuff with the data (e.g., render a Web page)

 Close the socket



Servers Differ From Clients

* Passive open

— Prepare to accept connections Q

— ... but.don t.actually esta.bllsh 70 D S

— ... until hearing from a client \1,«’(—/ )
AN

* Hearing from multiple clients

— Allowing a backlog of waiting clients
— ... in case several try to communicate at once

 Create a socket for each client

— Upon accepting a new client
— ... Create a new socket for the communication



Typical Server Program

* Prepare to communicate

— Create a socket
— Associate local address and port with the socket

* Wait to hear from a client (passive open)

— Indicate how many clients-in-waiting to permit
— Accept an incoming connection from a client

* Exchange data with the client over new socket
— Receive data from the socket
— Do stuff to handle the request (e.g., get a file)
— Send data to the socket
— Close the socket



Putting it All Together

socket ()

'

bind ()

v

listen|()

'

accept ()

Client

socket ()
establiSh *

ction
conne —» connect ()

'

send request

rite
read () write()
process
request
send
write () reSponse

— read ()



Client Creating a Socket: socket()

Creating a socket
— int socket(int domain, int type, int protocol)

— Returns a file descriptor (or handle) for the socket
— Originally designed to support any protocol suite

Domain: protocol family
— PF_INET for the Internet (IPv4)

Type: semantics of the communication
— SOCK_STREAM: reliable byte stream (TCP)
— SOCK_DGRAM: message-oriented service (UDP)

Protocol: specific protocol
— UNSPEC: unspecified
— (PF_INET and SOCK_STREAM already implies TCP)



Client: Learning Server Address/Port

e Server typically known by name and service
— E.g., “www.cnn.com” and “http”

Need to translate into IP address and port #
— E.g., “64.236.16.20” and “80”

Translating the server’s name to an address
— struct hostent *gethostbyname(char *name)

— Argument: host name (e.g., “www.cnn.com”
— Returns a structure that includes the host address

* |dentifying the service’s port number
— struct servent
*getservbyname (char *name, char *proto)
— Arguments: service (e.g., “ftp”) and protocol (e.g., “tcp”)
— Static configin/etc/services



Client: Connecting Socket to the Server

* Client contacts the server to establish connection
— Associate the socket with the server address/port
— Acquire a local port number (assigned by the OS)
— Request connection to server, who hopefully accepts

e Establishing the connection
— int connect (int sockfd,
struct sockaddr *srv_addr,
socketlen t addrlen)

— Arguments: socket descriptor, server address, and
address size

— Returns 0 on success, and -1 if an error occurs



Client: Sending Data

* Sending data
— ssize t write
(int sockfd, void *buf, size t len)

— Arguments: socket descriptor, pointer to buffer of
data to send, and length of the buffer

— Returns the number of bytes written, and -1 on
error



Client: Receiving Data

* Receiving data

— ssize t read
(int sockfd, void *buf, size t len)

— Arguments: socket descriptor, pointer to buffer to
place the data, size of the buffer

— Returns the number of characters read (where O
implies “end of file”), and -1 on error

— Why do you need len?
— What happens if buf’s size < len?

* Closing the socket
— int close(int sockfd)



Server: Server Preparing its Socket

* Server creates a socket and binds address/port
— Server creates a socket, just like the client does

— Server associates the socket with the port number
(and hopefully no other process is already using it!)

— Choose port “0” and let kernel assign ephemeral port

* Create a socket
— int socket (int domain,
int type, int protocol)
* Bind socket to the local address and port number
— int bind (int sockfd,
struct sockaddr *my addr,
socklen t addrlen)
— Arguments: sockfd, server address, address length
— Returns 0 on success, and -1 if an error occurs



Server: Allowing Clients to Wait

 Many client requests may arrive
— Server cannot handle them all at the same time
— Server could reject the requests, or let them wait

* Define how many connections can be pending
— 1int listen(int sockfd, int backlogqg)
— Arguments: socket descriptor and acceptable backlog
— Returns a 0 on success, and -1 on error

 What if too many clients arrive?

— Some requests don’t get through /@
— The Internet makes no promises... HLY>
— And the client can always try again L




Server: Accepting Client Connection

s>,

— Blocking until the request arrives W o
— And then accepting the new request

* Now all the server can do is wait...
— Waits for connection request to arrive

* Accept a new connection from a client
— int accept(int sockfd,

struct sockaddr *addr,
socketlen t *addrlen)

— Arguments: sockfd, structure that will provide client
address and port, and length of the structure

— Returns descriptor of socket for this new connection



Server: One Request at a Time?

e Serializing requests is inefficient

— Server can process just one request at a time

 May need to time share the server machine
— Alternate between servicing different requests

* Do a little work on one request, then switch when you are
waiting for some other resource (e.g., reading file from disk)

* “Nonblocking I/0”
— Or, use a different process/thread for each request

* Allow OS to share the CPU(s) across processes

— Or, some hybrid of these two approaches



Client and Server: Cleaning House

* Once the connection is open
— Both sides read and write
— Two unidirectional streams of data
— In practice, client writes first, and server reads
— ... then server writes, and client reads, and so on

* Closing down the connection
— Either side can close the connection
— ... using the close () system call

 What about the data still “in flight”
— Data in flight still reaches the other end
— So, server can close () before client finishes reading



Putting it All Together

socket ()

'

bind ()

v

listen|()

'

accept ()

Client

socket ()
establiSh *

ction
conne —» connect ()

'

send request

rite
read () write()
process
request
send
write () reSponse

— read ()



One Annoying Thing: Byte Order

Hosts differ in how they store data
— E.g., four-byte number (byte3, byte2, bytel, byteO)

Little endian (“little end comes first”): Intel x86’s
— Low-order byte stored at the lowest memory location
— ByteO, bytel, byte2, byte3

Big endian (“big end comes first”)

— High-order byte stored at lowest memory location

— Byte3, byte2, bytel, byte O

Makes it more difficult to write portable code

— Client may be big or little endian machine
— Server may be big or little endian machine



Endian Example: Where is the Byte?

16 bits Memory 32 bits Memory

1 +0 33 42 +1_ +0
100078 ] 1000 78 1000 78
Liga. | 1001 1002 1004
Endian 1002 1004 1008
1003 1006 100C
0+ ¥0  +1  +2  +3
1000 | 78 1000 | 78 1000| 78
Big- 1001 1002 1004
Endian 1002 1004 1008
1003 1006 100C




IP is Big Endian

e But, what byte order is used “on the wire”?
— Internet protocols picked convention: IP is big endian
— aka “network byte order”

* Writing portable code require conversion
— Use htons() and htonl() to convert to network byte order
— Use ntohs() and ntohl() to convert to host order

* Hides details of what kind of machine you’re on

— Use the system calls when sending/receiving data
structures longer than one byte



Using htonl and htons

int sockfd = // connected SOCK STREAM
u int32 t my val = 1234;
u intlé t my xtra = 16;

u short bufsize = sizeof (struct data t);
char *buf = New char[bufsize];

bzero (buf, bufsize);
struct data t *dat = (struct data t *) buf;
dat->value = htonl (my val);

dat->xtra = htons (my xtra);

int rc = write (sockfd, buf, bufsize);



Why Can’t Sockets Hide These Details?

Dealing with endian differences is tedious
— Couldn’t the socket implementation deal with this
— ... by swapping the bytes as needed?

No, swapping depends on the data type

— 2-byte short int: (byte 1, byte 0) vs. (byte O, byte 1)

— 4-byte long int: (byte 3, ... byte 0) vs. (byte O, ... byte 3)

— String of one-byte chars (char O, char 1, char 2, ...) in both

Socket layer doesn’t know the data types

— Sees the data as simply a buffer pointer and a length
— Doesn’t have enough information to do the swapping

Higher-layer with defined types can do this for you
— Java object serialization, RPC “marshalling”



