1962

(a)

(b

(c)

@]

Iig. 8—Oscilloscope traces obtained using the analog of a three-rung-

laddic. Time scale: 1 usec/cm. (a) Applied mme, 500 ma-turns/cm.
(b) Internodal magnetic potential difference. 200 ma-turns/cm. (c)
Switching transient in the far rung. 50 mv/turn-cm. (d) Switching
transient in the central rung. 1 volt§ turn-cm,

Kilburn et al.: One-Level Storage System

223

CONCILUSION

A core analog can be built to simulate any multipath
core provided only that the lumped-constant assumptions
outlined earlier are applicable. In certain cases it may be
casier to build an analog than fabricate the prototype. The
analog may be simpler than its prototype. MPC’s some-
times have “dead” branches which are never switches but
serve merely to satisfy (1). Nearly every other rung of the
laddic described previously® is a dead rung. Inasmuch
as the analog really obeys the time derivative of (1), the
dead branches may be eliminated.

It should be borne in mind that the analogy is not per-
fect. Because of the resistive term on the right-hand side of
(4), the integration performed to obtain (7) cannot be
trusted over long periods of time. Tt is this fact that makes
the special reset winding mentioned in Section IV neces-
sary. Experiments performed on analogs have shown that
they can be made to behave like their MPC prototypes.
But since the analogy is not perfect, effects can be pro-
duced not evidenced by multipath cores.

ACKNOWLEDGMENT

The -author appreciates the many helpful comments on
the manuscript made by U. F. Gianola, G. W. Dick and
E. M. Gyorgy.

One-Level Storage System”

T. KILBURNY, D. B. G. EDWARDSY, M. J. LANIGANY, axp F. H. SUMNER?

Summary—After a brief survey of the basic Atlas machine, the
paper describes an automatic system which in principle can be
applied to any combination of iwo storage systems s0 that the com~
hination can be regarded by the machine user as a single level. The
actual system described relates to a fast core store-drum combina-
tion. The effect of the system on instruction times is illustrated, and
the tape transfer system is also introduced since it fits basically in
through the same hardware. The scheme incorporates a “learning”
program, a technique which can be of greater importance in future
computers, .

1. INTRODUCTION

N A UNIVERSAL high-speed digital computer it is
necessary to have a large-capacity fast-access main
store, While more efficient operation of the computer
“an be achieved by making this store all of one type, this
“1¢p is scarcely practical for the storage capacities now
heing considered. For example, on Atlas it is possible to

k3 03 >
> Received September 11, 1961,
" I Department of Computer Engineering, University of Manchester,
anchester, England.

address 108 words in the main store. In practice on the first
installation at Manchester University a total of 10® words
are provided, but though it is just technically feasible to
make this in one level it is much more economical to pro-
vide a core store (16,000 words) and drum (96,000 words)
combination. o

Atlas is a machine which operates its peripheral equip-
ment on a time division basis, the equipment “interrupt-
ing” the normal main program when it requires attention.
Organization of the peripheral equipment is also done by
program so that many programs can be contained in the
store of the machine at the same time. This technique can
also be extended to include several main programs as well
as the smaller subroutines used for controlling peripherals.
For these reasons as well as the fact that some orders take
a variable time depending on the exact numbers involved,
it is not really feasible to “optimum” program transfers of
information between the two levels of store, i.e., core store
and drum, in order to eliminate the long drum access time
of 6 msec. Hence a system has been devised to make the

T —-
224

core drum store combination appear to the programmer as
a single level of storage, the requisite transfers of informa-
tion taking place automatically. There are a number of
additional benefits derived from the scheme adopted, which
include relative addressing so that routines can operate
anywhere in the store, and a “lock out” facility to prevent
interference between different programs simultaneously
held in the store.

II. Tar Basic MACHINE

The arrangement of the basic machine is shown in Fig.
1. The available storage space is split into three sections;
the private store which is used solely for internal machine
organization, the central store which includes both core
and drum store, in which all words are addressed and is
the store available to the normal user, and finally the tape
store, which is the conventional backing-up large capacity
store of the machine. Both the private store and the main
core store are linked with the main accumulator, the B-
store, and the B-arithmetic unit. However the drum and
tape stores only have access to these latter sections of the
machine via the main core store. ‘

The machine order code is of the single address type, and
a comprehensive range of basic functions are provided by
normal engineering methods. Also available to the pro-
grammer are a number of extra functions termed “extra-
codes” which give automatic access to and subsequent re-
turn from a large number of built-in subroutines. These
routines provide

1) A number of orders which would be expensive to pro-
vide in the machine both in terms of equipment and
also time because of the extra loading on certain cir-
cuits. An example of this is the order:

Shift accumulator contents -£# places where » is an
integer.

2) The more complex mathematical operations, e.g., sin
x, log x, etc.,

3) Control orders for peripheral equipments,
readers, parallel printers, etc.,

4) Input-output conversion routines,

5) Special programs concerned with storage allocation
to different programs being run simultaneously, mon-
itoring routines for fault finding and costing pur-
poses, and the detailed organization of drum and
tape transfers.

card

All this information is permanently required and hence is
kept in part of the private store termed the “fixed store”
which operates on a “read only” basis. This store consists
of 2 woven wire mesh into which a pattern of small “linear”
ferrite slugs are inserted to represent digital information.
The information content can only be changed manually
and will tend to differ only in detail between the different
versions of the Atlas computer. In Muse this store is ar-
ranged in two units each of 4096 words, a unit consisting of

1 T, Kilburn and R. L. Grimsdale, “A digital computer store with a
very short read time,” Proc. I EE, vol. 107, pt. B, pp. 56 -572; November,
19690,

IRE TRANSACTIONS ON ELECTRONIC COMPUTERS

} B~ STORE

128 WORDS
= 24 DIGITS PERIPHERAL
1 r EQUIPMENTS
| 1 [E-ARITAMETIC
(Il UNIT. -
i

T——
Ao

i
MAIN
 JaccumuLator

——»— ADDRESS CHANNELS
e— —o— (NPORMATION CHANNELS (fw s,

DRUM STORE
4 DRUMS

4K 24, 576 WD)

R

I U

Fig. 1—Tayout of basic machine.

16 columns of 256 words, each word being 50 bits. Th.
access time to a word in any one column is about 0.4 use.. .
If a change of column address is required, this figure in-
creases by about 1 usec due to switching transients in the
read amplifiers. Subsequent accesses in the new columy
revert to 0.4 usec. The store operates in conjunction with «
subsidiary core store of 1024 words which provides work-
ing space for the fixed store programs, and has a cycle tim
of about 1.8 usec. There are certain safeguards against :
normal machine user gaining access to addresses in eithe
part of the private store, though in effect he makes use o
this store through the extracode facility.

The central store of the machine consists of a drum am
core store combination, which has a maximum addressable ©
capacity of about 10° words. In Muse the central stor
capacity is about 96,000 words contained on 4 drums. Any
part of this store can be transferred in blocks of 512 words
to/from the main core store, which consits of four sepa-;
rate stacks, each stack having a capacity of 4096 words. .

The tape system provides a very large capacity backing
store for the machine. The user can effect transfers of van
able amounts of information between this store and the
central store. Tn actual fact such transfers are organizud
by a fixed store program which initiates automatic trans
fers of blocks of 512 words between the tape store and the
main core store. The system can handle eight tape decks
running simultaneously, each producing or demanding ?
word on average every 88 usec. .

The main core store address can thus be provided from
either the central mackine, the drum, or the tape system
Since there is no synchronization between these addresscs
there has to be a priority system to allocate addresses 10
the core store. The drum has top priority since it delivers3
word every 4 psec, the tape next priority since words ¢!
arise every 11 usec from 8 decks and the machine uses th¢
core store for the rest of the available time. A priority ¥
tem necessarily takes time to establish its priority, and
it has been arranged that it comes into effect only at each
drum or tape request. Thus the machine is not slowed dov?
in any way when no drum or tape transfers take place. The
effect of drum and tape transfers on machine speed is giv*"
in Appendix 1.

{pril

RAL
NTS

. The
b usec,
tre in-
in the
olumn
with a
work-
e time
inst a
ieither
tuse of

m and
sssable
| store
5. Any
~words
t sepa-
yords.

acking
5f vari-
nd the
ranized
trans-
.nd the
s decks
ding a

id from
system.
fresses,
ssses to
livers a
tds can
1ses the
ity sys

and sv
at each
id down
ice. The
is given

i

1962

To simplify the control commands given to the drum,
(apes and peripheral equipment in the machine, the orders
a1l take the form b—S or s—B and the identification of the
required command register is provided by the address S.
This ‘type of storage is clearly widely scattered in the
nachine but is termed collectively the V-store.

In the central machine the main accumulator contains a
jast adder? and has built-in multiplication and division
jacilities. It can deal with fixed or floating point numbers
and its operation is completely independent of the B-store
and B-arithmetic unit. The B-store is a fast core store
(cycle time 0.7 psec) of 120 twenty-four bit words operat-
ing in 2 word selected partial flux switching mode.? Eight
«fast” B lines are also provided in the form of flip-flop
registers. Of these, three are used as control lines, termed

main, extracode, and interrupt controls respectively. The .

arrangement has the advantage that the control numbers
can be maniputated by the normal B-type orders, and the

existence of three controls permits the machine to switch

rapidly from one to another without having to transfer
control numbers to the core store. Main control is used
when the central machine is obeying the current program,
while the extracode control is concerned with the fixed
store subroutines. The interrupt control provides the
means for handling numerous peripheral equipments which
“interrupt” the machine when they either require or are
providing information. The remaining “fast” B lines are
mainly used for organizational procedures, though B124 is
the floating point accumulator exponent.

The operating speed of the machine is of the order of
0.5% 10¢ instructions per second. This is achieved by the
use of fast transistor logic circuitry, rapid access to storage
locations, and an extensive overlapping technique. The
latter procedure is made possible by the provision of a
number of intermediate buffer storage registers, separate
access mechanisms to the individual units of core store
and parallel operation of the main accumulator and B-
arithmetic units. The word length throughout the machine
is 48 bits which may be considered as two half-words of
24 bits each. All store transfers between the central ma-
chine, the drum and tape stores are parity checked, there
being a parity digit associated with each half-word. In the
case of transfers within the central store (i.e., between
main core store and drum) the parity digits associated
with a given word are retained throughout the system.
Tape transfers are parity checked when information is
transferred to and from the main core store, and on the
tape itself a check sum technique involving the use of two
closely spaced heads is used.

The form of the instruction, which allows for two B-
modifications, and the allocation of the address digits is
shown in Fig. 2(a). Half of the addressable store locations

* T. Kilburn, D. B. H. Edwards and D. Aspinall, “A parallel arith-
Mmetic unit using a saturated transistor fast-carry circuit,” Proc. [EE,
vol. 107, pt. B, pp. 573-584; November, 1960.

3D, B. G. Edwards, M. J. Lanigan and T. Kilburn, “Ferrite-core
Memory systems with rapid cycle times,” Proc. IEE, vol. 107, pt. B, pp.
385-598; November, 1960.

Kilburn et al.: One-Level Storage System

225

ADDRESS
24 BITS

FUNCTION [Ba {Bm
10 BITS [TBITS|TBITS

(@)

23222!‘)20 19 1817 16 15 14 13 i'Z‘lH 109876 54 312 4

0- IBLOCK ADDRESS "« _LINE ADDRESS —
IADDRESS IN CENTRAL STORE (CORE STORE & DRLIM)

H
it 0'|0 coB0Qo oim‘—é-—LlNEADDRESS—aD

S
t 0 00 OMEg“ K 00 o%légsi—’f—' LINE ADDRESS —
| HE ADDRESS IN FIXED STORE
| |
T 0 1,0 000 0 0 O 0= LINE ADDRESS ——
;r _ ADDRESS IN SUBSIDIARY STORE,
i

OF REGISTER
{ _ADDRESS IN V-STORE

MOST SIGNIFICANT HALF WORD l‘O
LEAST SIGNIFICANT HALF WORD 1

MOST SIGNIFICANT CHARACTER O ¢}
LEAST -SIGNIFICANT CHARACTER |1 1

(®)
47464544434241403338
0000885686566 —
0Qcot B CODES
0010 B-TEST CODES
0014 A CODES
0t00 —)
010! 8- CODES & EXTRACODE RETLIRN
o110 —_—
041y A- CODES & EXTRACODE RETHRN
10% 6 . B-TYPE EXTRACODE
{180 . A-TYPE EXTRACODE
()
XPQERT] — WATISSA
eS| 40 BITS INCLUDING SIGN.
(d)

Fig. 2—Interpretation of a word. (a) Form of instruction. (b) Allocation
3{{ a}ddress digits. (c) Function of decoding. (d) Floating point number
8%,

are allocated to the central store which is identified by a
zero in the most significant digit of the address. [See Fig.
2(b).] This address can be further subdivided into block
address, and line address in a block of 512 words. The least
significant digits, 0 and 1, make it possible to address 6 bit
characters in a half word and digit 2-specifies the half word.

The function number is split into several sections, each
section relating to a particular set of operations, and these
are listed in Fig. 2(c). The machine orders fall into two
broad classes, and these are

1) B codes: These involve operations between a B line
specified by the B, digits in the instruction and a
core store line whose address can be modified by the
contents of a B line determined by the B, digits.
There are a total of 128 B lines, one of which, By, al-

N 4_11‘

226 IRE TRANSACTIONS ON ELECTRONIC COMPUTERS

ways contains zero. Of the other lines 90 are avail-
able to the machine user, 7 are special registers previ-
ously mentioned, and a further 30 are used by extra-
code orders.

2) A codes: These involve operations between the Ac-
cumulator and a core store line whose address can
now be doubly modified first by contents of Bn and
then by the contents of B4. Both fized and floating
point orders are provided, and in the latter case num-
bers take the form of X8Y, the digit allocation of X
and ¥ being shown in Fig. 2(d). When fixed point
working occurs, use is made only of the X digits.

T1II. ONE LEVEL STORE CONCEPT

The choice of system for the fast access store in a large

scale computer is governed by a number of conflicting fac-
tors which include speed and size requirements, economic
and technical difficulties. Previously the problem has been
resolved in two extreme cases either by the provision of a
very large core store, ¢.g., the 2.5 megabit* store at M.I.T,,
or by the use of a small core store (40,000 bits) expanded
to 640,000 bits by a drum store as in the Ferranti Mercury®
computer. Each of these methods has its disadvantages, in
the first case, that of expense, and in the second case, that
of inconvenience to the user, who is obliged to program
transfers of information between the two types of store
and this can be time consuming. In some instances it is
possible for an expert machine user to arrange his program
so that the amount of time lost by the transfers in the two-
level storage arrangement is not significant, but this sort
of “optimum” programming is not very desirable. Suitable
interpretative coding® can permit the twa-level system to
appear as one level. The effect is, however, accompanied
by an effective loss of machine speed which, in some pro-
grams and depending on details of machine design can be
quite severe, varying typically, for example, between one
and three.

The two-level storage scheme has obvious economic ad-
vantages, and inconvenience to the machine user can be
eliminated by making the transfer arrangements com-
pletely automatic. In Atlas a completely automatic sys-
tem has been provided with techniques for minimizing the
transfer times. In this way the core and drum are merged
into an apparent single level of storage with good perform-
ance and at moderate cost. Some details of this arrange-
ment on the Muse are now provided.

The central store is subdivided into blocks of 512 words
as shown by the address arrangements in Fig. 2(b). The
main core store is also partitioned "into blocks of this size

4W. N. Papian, “High-speed computer stores 2.5 megabits,” Elec-
tromics, vol. 30; October, 1957.

6 K. Lonsdale and E. T. Warburton, “Mercury: a high speed digital
computer,” Proc. [EE, vol. 103, pt. B (suppl. 2), pp. 174-183; 1956.

T, Kilburn, D. B. G. Edwards, and C. E. Thomas, “The Manchestetr
University Mark II Digital Computing Machine,” Proc. I EE, vol. 103,
pt. B (suppl. 2), pp. 247-268; 1956.

8 R. A. Brooker, “Some techniques for dealing with two-level storage,”
The Computer Journal, vol. 2; 1960.

April

which for identification purposes are called pages. Associ-
ated with each of these core store page positions is a “page
address register” (P.A.R.) which contains the address of
the block of information at present occupying -that page
position. When access to any word in the central store is
required the digits of the demanded block address are com-
pared with the contents of all the page address registers,
If an “equivalence” indication is obtained then access to
that particular page position is permitted. Since a block
can occupy any one of the 32 page positions in the core
store it is necessary to modify some digits of the demanded
block address to conform with the page positions in which
an equivalence was obtained.

These processes are necessarily time consuming but by
providing a by-pass of this procedure for instruction ac-
cesses (since, in general, instruction loops are all contained
in the same block) then most of this time can be over-
lapped with a useful portion of the machine or core store
rhythm. In this way information in the core store is avail-
able to the machine at the full speed of the core store and
only rarely is the over-all machine speed effected by delays
in the equivalence circuitry.

If a “not equivalence” indication is obtained when the
demanded block address is compared with the contents of
the P.A.R.s then that address, which may have been
B-modified, is first stored in a register which can be ac-
cessed as a line of the V-store. This permits the central
machine easy access to this address. An “interrupt” also
occurs which switches operation of the machine over to the
interrupt control, which first determines the cause of the
interrupt and then, in this instance, enters a fixed store

routine to organize the necessary transfers of information

between drum and core store.

A. Drum Transfers

On each drum, one track is used to identify absolute
block positions around the drum periphery. The records on
these tracks are read into the 6 registers which can be ac-
cessed as lines of the V-store and this permits the present
angular drum position to be determined, though only in
units of one block. In this way the time needed to transfer
any block while reading from the drums can be assessed.
This time varies between 2 and 14 msec since the drum
revolution time is 12 msec and the actual transfer time
2 msec. »

The time of a writing transfer to the drums has been
reduced by writing the block of information to the first
available empty block position on any drum. Thus the ac-
cess time of the drum can be eliminated provided there are
a reasonable number of empty blocks on the drum. This
means, however, that transfers to/from the drum have to
be carried out by reference to a directory and this is stored
in the subsidiary store and up-dated whenever a transfer
occurs.

When the drum transfer routine is entered the first ac-
tion is to determine the absolute position on a drum of the
required block. The order is then given to carry out the
transfer to an empty page position in the core store. The

Lo - j—.- -

14

tr
th
tk
m
et
fr
fe

a
ti

e e a A e e et

pril

oci-
age
5 of
age
e is
bm-
ers,
5 to
ock
sore
ded
1ich

ac-
ned
ver-
tore
rail-
and
lays

the
s of
een
ac-
tral
also
the
the
tore
tion

lute
son

ient
rin
sfer
sed.
um
ime

een
irst

ac-

are
“his
> to
red
sfer

ac-
the
‘the

1962

transfer occurs automatically as seon as the drum reaches
the correct angular position. The page address register in
the vacant position in the core store is set to a specific block
number for drum transfers. This technique simplifies the
engineering with regard to the provision of this number
from the drum and also provides a safeguard against trans-
ferring to the wrong block.

As soon as the order asking for a read transfer from the
drum has been given the machine continues with the drum
transfer program. It is now concerned with determining a
block to be transferred back from the core store to the
drum. This is necessary to ensure an empty core store page

Kilburn et al.: One-Level Storage System

227

access to that page position can then be made from the
central machine. It is clear that the L.O. digit can also be
used to prevent interference between programs when sev-
eral different ones are being held in the machine at the
same time,

In Section III it was stated that addresses demanding
access to the core store could arise from three. distinct
sources, the central machine, the drum, and the tape.
These accesses are complicated because of 1) the equiva-
lence technique, and 2) the lock out digit. The various
cases and the action that takes place are summarized in
Table I.

TABLE I

COMPARISON OF DEMANDED BLOCK ADDRESS WITH CONTENTS OF THE P.A.R.s
RESULTANT STATE OF EQUIVALENCE AND Lock OuT CIrRCUITS

Equivalence
Lock out=0
EQ]

Source of Address

Nt B (Ene
(N-EQ] [E.Q. & L.O.

1. Central Machine
2. Drum System
3. Tape System

Access to required page position
Access to required page position
Access to required page position

Not available to this program
Fault condition indicated
Fault condition indicated

Enter drum transfer routine
Fault condition indicated
Fault condition indicated

position when the next read transfer is required. The block
in the core store to be transferred has to be carefully
chosen to minimize the number of transfers in the program
and this optimization process is carried out by a learning
program, details of which are given in Section V. The
operation of this program is assisted by the provision of
the “use” digits which are associated with each page posi-
tion of the core store.

To interchange information between the core store and
drums, two transfers, a read from and a write to the drum
are necessary. These have to be done sequentially but
could occur in either order. The technique of having a
vacant page position in the core store permits a-read trans-
fer to occur first and thus allows the time for the learning
program to be overlapped either into the waiting period
for the read transfer or into the transfer time itself. In the
time remaining after completion of the learning program
an entry is made into the over-all supervisor program for
the machine, and a decision is taken concerning what the
machine is to do until the drum transfer is completed. This
might involve a change to a different main program.

A program could ask for access to information in a page
position while a drum or tape transfer is taking place to
that page. This is prevented in Atlas by the use of a “lock
out” (L.0.) digit which is provided with each Page Ad-
dress Register. When a lock out digit is set at 1, access to
that page is only permitted when the address has been pro-
vided either by the drum system, the tape system, or the
interrupt control. The latter case permits all transfers from
paper tape, punched card, and other peripheral equip-
ments, to be handled without interference from the main
program. When the transfer of a block has been completed
the organizing program resets the L.O. digit to zero and

The provision of the Page Address Registers, the equiv-
alence circuitry, and the learning program have permitted
the core store and drum to be regarded by the ordinary
machine user as a one level store, and the system has the
additional feature of “floating address” operation, i.e., any
block of information can be stored in any absolute position
in either core or drum store. The minimum access time to
information in this store is obviously limited by the core
store and its arrangement and this is now discussed.

B. Core Store Arrangement

The core store is split into four stacks, each with indi-
vidual address decoding and read and write mechanisms.
The stacks are then combined in such a way that common
channels into the machine for the address, read and write
digits are time shared between the various stacks. Sequen-
tial address positions occur in two stacks alternately and
a page position which contains a block of 512 sequential
addresses is thus arranged across two stacks. In this way it
is possible to read a pair of instructions from consecutive
addresses in parallel by increasing the size of the read chan-
nel. This permits two instructions to be completely obeyed
in three store “accesses.” The choice of this particular
storage arrangement is discussed in Appendix IIL.

The coordination of these four stacks is done by the
“core stack coordinator” and some features of this are now
discussed, starting with the operation of a single stack.

C. Operation of a Single Stack of Core Store

The storage system employed is a coincident current
M.LT. system arranged to give parallel read out of 50
digits. The reading operation is destructive and each read
phase of the stack cycle is followed by a write phase during

228

which the information read out may be rewritten, This is
achieved by a set of digit staticizors which are loaded dur-
ing the read phase and are used to control the inhibit cur-
rent drivers during the write phase. When new informa-
tion is to be written into the store a similar sequence is fol-
lowed, except that the digit staticizors are loaded with the
new information during the read phase. A diagram indicat-
ing the different types of stack cycle is shown in Fig. 3.
There is a small delay Wp (=~100 musec) between the
“stack request” signal, SR, and the start of the read phase
to allow for setting of the address state and the address de-
coding. The output information from the store appears in
the read strobe period, which is towards the end of the read
phase. In general, the write phase starts as soon as the read
phase ends. However, the start of the write phase may be

central machine. This delay is shown as W, in Fig. 3(c).
The interval T4 between the stack request and the read
strobe is termed the stack access time, and in practice this
is approximately one third of the cycle time T'c. Both T4
and T¢ are functions of the storage system and assuming
that W, is zero have typical values of 0.7 usec and 1.9 usec
respectively. A holdup gate in the request channel pre-
vents the next stack request occurring before the end of the
preceding write phase.

TAUEST_L_' .
EASE | I______ _____l

b

READ r
3TROBE

|
|
Ly
L‘WD"

WRITE
PHASE P N
| TA | i
| TC]
| 1
(2)
Madksr LI
1
R _l_!______l
Whe 11 1
' |
W T | T
Wo
(b)
¥
Rgesr L]
READ —‘j [
PHASE | '
1 J
READ -
STRORE | | LI |
41 .
Welee | : : L
!
WRIT ' -
PRICE |W I | [
R oMW
(c)
T'4= Access time, T¢=Cyclic time, Wp=Wait for address decodmg

and loading of address register, Ww=Wait for release of write hold '
up.

Fig. 3—Basm types of stack cycle. () Read order (s—4). (b) Write
order (@—s). (c) Read-write order (b+s—S)-

IRE TRANSACTIONS ON ELECTRONIC COMPUTERS

held up until the new information is available from the -

April) .

D. Operation of the Main Core Store with
the Ceniral Machine

A schematic diagram of the essentials of the main core
store control system is shown in Fig. 4. The control signals
SA4; and S4, indicate whether the address presented ig
that of a single word or a pair of sequentially addresseq
instructions. Assuming that the flip-flop F is in the reset
condition, elther of these signals results in the loadmg of
the buffer address register (B.A.R.). This loading is done
by the signal B.A.B.A. which also indicates that the buffer
register in the central machine has become free:

In dealing with the first request the block address digits
in the B.A.R. are compared with the contents of all the
page address registers. Then one of the indications summa-
rized in Table I and indicated in Fig. 4 is obtained. Assum-
ing access to the required store stack is permitted then o
set C.S.F. signal is given which resets the flip-flop F. Ii
this occurs before the next access request arises, then the
speed of the system is not store-limited. In most cases
SET CSF is generated when the equivalence operation on

MAIN STORE BUFTER ADDRES?{: REGIETER.
ALDRESS BLGCK ADDRESS LINE ADDRESS
.
PAGE. ADGRESS REG.O |
NOT INSTRLCTION
PAGE ADDRESS' REG DDRESS
|
|
|
INSTRUCTIO
PAGE NIDPESS PEG 50 NipRragon
\—‘W__"
1 EQUIVALENCE W&
i PAGE PAGE DIGIT I
| CIRCUITRY. DIGITS '() REGISTER.
N —
EQ NEQ EQ&LD
if
SAL BABA — CIRCLIT
RIGHT WRONG
el PAGE . PAGE.

CONTROL CIRCUITRY

STACK STACK
REQUEST ADDRESS
STACK 0 STACK § .
FAGE[O
PAGE | 1 J
PAGE | 18
STACK 2 STACK 3
PAGE] &
PAGE| 17)
i
4
T PAGE | 31

MAIN, CORE STORE

Fig. 4—Main core store control.

|

1962

(he demanded block address is complete, and the read

hase of the appropriate stack (or stacks) has started.
Until this time the information held in the B.A.R. must not
be allowed to change. In Fig. 5 a flow diagram is shown for
the various cases which can arise in practice.

When a single address request is accepted it is necessary
(o obtain an “equivalence” indication and form the page
location digits before the stack request can be generated.
The SET CSF signal then occurs as soon as the read phase
starts. If a “not equivalent” or “equivalent and locked out”
indication is obtained a stack request is not generated, and
the contents of the B.A.R. are copied in to a line of the V-
store before SET CSF is generated.

When access to a pair of addresses is requested (i.e., an
instruction pair) the stack requests are generated on the
assumption that these instructions are located in the same
page position as the last pair requested, i.e., the page posi-
tion digits are taken from the page digit register. (See Fig.
4.) In this way the time required to obtain the equivalent
indication and form the page location digits is not in-
cluded in the over-all access time of the system. The as-
sumption will normally be true, except when crossing
block boundaries. The latter cases are detected and cor-
rected by comparing the true position page digits obtained

SA10R3A2

WAIT FOR
CORE STORE
. FREE,

SINGLE
ADBDRESS

AR
WAIT FOR WALT FOR
ES%IIVALENCE WMT(SEE TEXT) ENJTVALENCE
AND FORMATION AND FORMATION
OF PAGE DIGITS, OF PAGE DIGITS.
LUIVALENCE , EQUIVALENCE
NOT EQUIVALENT ggﬁ%s. NOT EGUIVALENT
O EQUIVALENT AND COMPARE PAGE OR EQUIVALENT
LOCKED OUT RS T AND LOCKED OLIT.
?GNTEN]'S OF
WAIT(SEE TEXT) fhot DiaT
P
COPYBAR STALK START READ
TO V- LINE REQUEST PHASE
| gsropRean | STOPREND
. TOMACHINE TO MACHINE
N
SET CSF
STARTREAD
PHASE
SET CSF /
COPY PAGE DIGITS
70 PAGE DIGIT
REGISTER
SETCSE SETLSF SET CSF.

Fig. 5—Flow diagram of main core store control.

Kilburn et al.: One-Level Storage System 229

as a result of the equivalence operation with the contents
of the page digit register and a “right page” or “wrong
page” indication is obtained. (See Fig. 4.) If a wrong page
is accessed this is indicated to the central machine and the
read out is inhibited. The true page location digits are
copied into the page digit register, so that the required
instruction pair will be obtained when next requested. The
read out to the central machine is also inhibited for “not
equivalent” or “equivalent and locked out” indications.
In Fig. 5 the waiting time indicated immediately before
the stack request is generated can arise for a number of
reasons. :

1) The preceding write phase of that stack has not yet
finished. '

2) The central machine is not yet ready either to accept

_information from the storg, or to supply information

to it. s

3) It is necessary to ensure a certain minimum time be-
tween successive read strobes from the core store
stacks to allow satisfactory operation of the parity
circuits, which take about 0.4 usec to check the in-
formation. This time could be reduced, but as it is
.only possible to get such a condition for a small part
of the normal instruction timing cycle it was not
thought to be an economical proposition.

The basic machine timing is now discussed.

IV. InsTRUCTION TIMES

In high-speed computers, one of the main factors limit-
ing speed of operation is the store cycle time. Here a num-
ber of techniques, e.g., splitting the core store into four
separate stacks and extracting two instructions in a single
cycle, have been adopted despite a fast basic cycle time of
2 psec in order to alleviate this situation. The time taken
to complete an instruction is dependent upon

1) The type of instruction (which is defined by the
function digits),

2) The exact location of the instruction and operand in
the core or fixed store since this can affect the access
time,

3) Whether or not the operand address is to be modified,

4) In the case of floating point accumulator orders, the
actual numbers themselves,

5) Whether drum and/or tape transfers are taking place.

The approximate times for various instructions are given
in Table IT. These figures relate to the times between com-
pleting instructions when a long sequence of the same type
of instruction is obeyed. While this method is not ideal, it is
necessary because in practice obeying one instruction is
overlapped in time with some part of three other instruc-
tions. This makes the detailed timing complicated, and so
the timing sequence is developed slowly by first considering
instructions obeyed one after another. It is convenient to
make these instructions a sequence of floating point addi-

tions with both instruction and operand in the core store

and with the operand address single B-modified.

 —

IRE TRANSACTIONS ON ELECTRONIC COMPUTERS

230

April

TABLE 1II
AprrOXMATE INsTRUCTION TIMES

Number of
Type of Instruction Modifications of

Address
Floating Point Addition 0
1
2

Floating Point Multiplication 0,1o0r2

Floating Point Division 0,1o0r2
Add Store Line to an Index Register 0
1
Add Index Register to Store Line and Rewrite to 0
1

Store Line

To obey this instruction the central machine makes two
requests to the core store, one for the instruction and the
second for the operand. After the instruction is received in
the machine the function part has to be decoded and the
operand address modified by the contents of one of the B
registers before the operand request can be made. Finally,
after the operand has been obtained the actual accumula-
tor addition takes place to complete the instruction. The
time from beginning to end of one instruction is 6.05 usec
and an approximate timing schedule is as follows in
Table IIL

If no other action is permitted in the time required to

complete the instruction (steps 1 to 8 in Table IIT), then
the different sections of the machine are being used very
inefficiently, e.g., the accumulator adder is only used for
less than 1.1 usec. However, the organization of the com-
puter is such that the different sections such as store stacks,
accumulator and B-arithmetic unit, can operate at the
same time. In this way several instructions can be started
before the first has finished, and then the effective instruc-
tion time is considerably reduced. There have, of course,
to be certain safeguards when for example an instruction
is dependent in any way on the completion of a preceding
instruction.

In the time sequence previously tabulated, by far the
longest time was that between a request in the central
machine for the core store and the receipt in the central
machine of the information from that store. T his effective
access time of 1.75 usec is made up as shown in Table IV,
It has been reduced in practice by the provision of two buf-
fer registers, one in the central machine and the other in
the core stack coordinator. These allow the equivalence
and transfer times to be ovetlapped with the organization
of requests in the central machine.

In this way, provided the machine can arrange to make
requests fast enough, then the effective access time is re-
duced to 0.8 usec. Further, since three accessses are
needed to complete two instrictions (one for an instruction
pair and one for each of the two operands) the theoretical
minimum time of an instruction is 1.2 usec 3%0.8/2 and
it then becomes store limited. Reference to Table III

Instruction in Core | Instructions in Fixed | Instructions in Fixed
Store. Operands in Store. Operands in Store. Operands in
Core Store. Time Core Store. Time Fixed Store. Time
in usec in usec in psec
1.4 1.65 1.2
1.6 1.65 1.2
2.03 1.9 1.9
4.7 4.7 4.7
13.6 13.6 13.6
1.53 1.65 1.15
1.85 1.85 1.85
1.63 1.65 —
1.8 1.7 —
=
TABLE IIT*

TIMING SEQUENCE FOR FLOATING POINT ADDITION
(Tnstructions and Operands in the Core Store)

I———
Time Interval Total
Sequence Between Steps Time
usec usec
1. Add 1 to Main Control 0
(Addition time) : 0.3
2. Make Instruction Request 0.3
(Transfer times, equivalence time
and stack access time) 1.75
3. Receive Instruction in Central Ma-
chine 2.05
(Load register and decode) 0.2
4. Function decoding complete 2.25
(Single address modi cation) 0.85 :
5. Request Operand 3.10
(Transfer times, equivalence time
and stack access time) 1.75
6. Receive Operand in Central Machine 4.85
(Load register) 0.1
7. Start Addition in Accumulator 4.95
(Average floating point addition,
including shift round and stand-
ardise) 1.1
8. Instruction complete 6.05

address modification. Times for no

*Tn step 4, time is for single
are 0.25 psec and 1.55 psec respec-

modification and two modifications
tively.
TABLE 1V
EFFECTIVE STORE Access TrvME

Total Time
Sequence usec
1. Request in Central Machine 0
2. Request in Core Stack Coordinator 0.25
3. Equivalence complete and request made to selected
stack 0.95
4. Tnformation in Core Stack Coordinator 1.65
5. Information in Central Machine 1.75

shows that the arithmetic operation takes 1.2 usec to com-
plete so that, on the average, the capabilities of the store
and the accumulator are well matched.

Another technique for reducing store access time for
structions has also been adopted. This permits the read
cycles of the two stacks to start assuming that the same
page will be referred to as in the previous instruction pair.

in- |

" —

1962

This, of cowy
time to taki
peen change
reduced by -
this limit ur

A schema
quence of ﬂq
The overlapi
cessive 1nstr
structions fo
and two for |
the practical
the theoretig
1.6 usec.

i ;
4
t ,J%‘
e !
IT!TIISY
EQUIVALENGE]

STRT S26D
OF FAIR.

; Bzl o
| Nt%?{m "Siﬁ»‘i

4
'
‘ h

Fig. 6—;,
adq
!
For certair:
pair of instru
the first pair
transfer of ¢
the function c
tion pair is hq?
Ina sequer%
Tiperand addx
vhile the tim¢
in which the
bn excess of 3
imit.
Perhaps a n
omputer is t
itructions. A f
h the formati
iequires a loo

|

1) Element
. B-modif

2) Multiply
(Operan

3) Add par
{ 4) Copy ad
product.i

5) Alter col

The time fof
he core store|
tchnique is sH

te first instru(
usec.

—

e ——

1962

This, of course, will normally be true and there is sufficient
(ime to take corrective procedures should the page have
peen changed. The limit of 1.2 usec per instruction is not
reduced by this technique, but the possibility of reaching
this limit under other conditions is enhanced.

A schematic diagram of the practical timing of a se-
quence of floating point addition orders is shown in Fig. 6.
The overlapping is not perfect and in the time between suc-
cessive instruction pairs the computer is obeying four in-
structions for 25 per cent of the time, three for 56 per cent
and two for 19 per cent. It is therefore to be expected that
the practical time for the complete order is greater than
the theoretical minimum time; it is in fact approximately
1.6 usec.

| ifa' AZ(uMILATOR _BUST
e

oy STACK
REQLEST i%?
2 | EQUIVALENCE. READ ol MEUMULATOR BuSY
SFae 6 P i
3 [{ T | souvmaNeE awan E&Z ALCUMLLATOR Y.
I W‘“ w fio] o)
4 | Bl equ rean (ORI [T
sy e
5 B s-vayrowx
START RSTRLTON
NEXTPAR REQUZST.
] [.

Fig. 6—Timing diagram for a sequence of floating point
addition orders. (Single address modification.)

For certain types of functions the reading of the next
pair of instructions before completing both instructions of
the first pair would be incorrect, e.g., functions causing
transfer of control. Such situations are recognized during
the function decoding, and the request for the next instruc-
tion pair is held up until a suitable time.

In a sequence of floating point addition orders with the
operand addresses unmodified the limit is again 1.2 usec
while the time obtained is 1.4 usec. For accumulator orders
in which the actual accumulator operation imposes a limit
in excess of 2 usec then the actual time is equal to this
limit.

Perhaps a more realistic way of defining the speed of the
computer is to give the time for a typical inner loop of in-
structions. A frequently oceurring operation in matrix work
in the formation of the scalar product of two vectors, this
requires a loop of five instructions:

1) Element of first vector into accumulator. (Operand
_ B-modified.)

2) Multiply accumulator by element of second vector.
(Operand B-modified.) ‘

3) Add partial product to accumulator.

4) Copy accumulator to store line containing partial
product.

5) Alter count to select next elements and repeat.

The time for this loop with instructions and operands on
the core store is 12.2 usec. The value of the overlapping
technique is shown by the fact that the time from starting
the first instruction to finishing the second is approximately
10 usec. :

Kilburn et al.: One-Level .étorage S’ystem

231

When the drum or tape systems are transferring informa-
tion to or from the core store then the rate of obeying in-
structions which also use the core store will be affected.
The affect is discussed in more detail in Appendix I. The
degree of slowing down is dependent upon the time at
which a drum or tape request occurs relative to machine
requests. It also depends on the stacks used by the drum
or tape and those being used by the central machine. The
approximate slowing down is by a factor of 25 per cent dur-
ing a drum transfer and by 2 per cent for each active tape
channel. (See Appendix I.)

V. TeE DruM TRANSFER LEARNING PROGRAM

The organization of drum transfers has been described
in Section ITA. After the transfer of the required block
from the drum to the core store has been initiated, the or-
ganizing program examines the state of the core store, and
if empty pages still exist, no further action is taken. How-
ever, if the core store is full it is necessary to arrange for an
empty page to be made available for use at the next non-
equivalence. The selection of the page to be transferred
could be made at random; this could easily result in many
additional transfers occurring, as the page selected could
be one of those in current use or one required in the near
future. The ideal selection, which wduld minimize the
total number of transfers, could only be made by the pro-
grammer. To make this ideal selection the programmer
would have to know, 1) precisely how his program oper-
ated, which is not always the case, and 2) the precise
amount of core store available to his program at any in-
stant. This latter information is not generally available as
the core store could be shared by other central machine
programs, and almost certainly by some fixed store pro-
gram organizing the input and output of information from
slow peripheral equipments. The amount of core store re-
quired by this fixed store program is continuously vary-
ing.” The only way the ideal pattern of transfers can be
approached is for the transfer program to monitor the be-
havior of the main program and in so doing attempt to
select the correct pages to be transferred to the drum., The
techniques used for monitoring are subject to the condi-
tion that they must not slow down the operation of the
program to such an extent that they offset any reduction
in the number of transfers required. The method described
occupies less than 1 per cent of the operating time, and the
reduction in the number of transfers is more than sufficient
to cover this.

That part of the transfer program which organizes the
selection of the page to be transferred has been called the
“learning” program. In order for this program to have
some data on which to operate, the machine has been de-
signed to supply information about the use made of the
different page§ of the core store by the program being
monitored. ‘

7 T, Kilburn, D. J. Howarth; R. B. Payne and F. H. Sumner, “The
Manchester University Atlas Operating System. Part I: Internal Organi-
sation,” The Compuier Journal, vol. 4; October, 1961.

232

With each page of the core store there is associated a
“use” digit which is set to “1” whenever any line in that
page is accessed. The 32 “use” digits exist in two lines of the
V-store and can be read by the learning program, the read-
ing automatically resetting them to zero. The frequency
with which these digits are read is governed by a clock
which measures not real time but the number of instruc-
tions obeyed in the operation of the main program. This
clock causes the learning program to copy the “use” digits
to a list in the subsidiary store every 1024 instructions. The
use of an instruction counter rather than a normal clock to
measure “time” for the learning program is due to the fact
that the operations of the main program may be inter-
rupted at random for random lengths of time by the opera-
tion of peripheral equipments. With an instruction counter
the temporal pattern of the blocks used will be the same
on successive runs through the same part of the program.
This is essential if the learning program is to make use of
this pattern to minimize the number of transfers.

When a nonequivalence occurs and after the transfer of
the required block has been arranged, the learning pro-
gram again adds the current values of the “use” digits to

the list and then uses this list to bring up to date two sets

of times also kept in the subsidiary store. These sets con-
sist of 32 values of £ and T, one of each for each page of the
core store. The value of ¢ is the length of time since the
block in that page has been used. The value of T is the
length of the last period of inactivity of this block. The
accuracy of the values of £ and T is governed by the fre-
quency with which the “use” digits are inspected.

The page to be written to the drum is selected by the
application in turn of three simple tests to the values of ¢
and T.

1) Any page for which t>T+1,
or 2) That page with {520 and (T—¢) max,
or 3) That page with Tmax (all £=0).

The first rule selects any page which has been currently
out of use for longer than its last period of inactivity. Such
a page has probably ceased to be used by the program and
is therefore an ideal one to be transferred to the drum. The
second rule ignores all pages with =0 as they are in cur-
rent use, and then selects the one which, if the pattern of
use is maintained, will not be required by the program for
the longest time. If the first two rules fail to select a page
the third ensures that if the page finally selected is wrong,
in that it is immediately required again, then, as in this
case, T will become zero and the same mistake will not be
repeated.

For all the blocks on the drum a list of values of 7 is kept.
The values of are set when the block is transferred to the
drum:

r=Time of transfer—value of ¢ for transferred page.

When a block is transferred to the core store the value of
7 is used to set the value of 7.

T'=Time of transfer—value of 7 for this block
= Length of last period of inactivity.

IRE TRANSACTIONS ON ELECTRONIC COMPUTERS

Apri

For the block transferred from the drum # is set to ¢

In order to make its decision the learning program hag
only to update two short lists and apply at the most thre
simple rules; this can easily be done during the 2 mge,
transfer time of the block required as a result of the nqp_
equivalence. As the learning program uses only fixed ap
subsidiary store addresses it is not slowed down during tp,
period of the drum transfer.

The over-all efficiency of the learning program cannot p,
known until the complete Atlas system is working. Hoy.
ever, the value of the method used has been investigate
by simulating the behavior of the one-level store and leay,.
ing program on the Mercury computer at Manchester Up;.
versity. This has been done for several problems using
varying amounts of store in excess of the core store avaj|.
able. One of these was the problem of forming the prodyc
A of two 80th order matrices B and C. The three matrice.
were stored row by row each one extending over 14 blocks,
only 14 pages of core store were assumed to be avilable,
The method of multiplication was

b1 X1st row of C=partial answer to 1st row of 4,
612X 2nd row of C-partial answer=second partial an-
swer, etc., ¢

thus matrix B was scanned once, matrix C 80 times an(
each row of matrix 4 80 times.

Several machine users were asked to spend a short time
writing a program to organize the transfers for a general
matrix multiplication problem. In no case when the method
was applied to the above problem were fewer than 337
transfers required. A program written specifically for this
problem which paid great attention to the distribution of
the rows of the matrices relative to block divisions required
234 transfers. The learning program required 274 transfers,
the gain over the hyman programmer was chiefly due to
the fact that the learning program could take full advan-
tage of the occasions when the rows of 4 existed entirely
within one block. .

Many other problems involving cyclic running of single
or multiple sets.of data were simulated, and in no case did
the learning program require more transfers than an ex-
perienced human programmer.

A. Prediction of Drum Transfers

Although the learning program terids to reduce the num-
ber of transfers required to a minimum, the transfers which
do occur still interrupt the operation of the program for
from 2 to 14 msec as they are initiated by nonequivalence
interrupts. Some or all of this time loss could be avoided by
organizing the transfers in advance. A very experienced
programmer having sole use of the core store could arrange
his own transfers in such a way that no unnecessary ones
ever occurred and no time was ever wasted waiting for
transfers to be completed. This would require a great deal
of effort and would only be worthwhile for a program that
was going to occupy the machine for a long time. By using
the data accumulated by the learning program it is pos-
sible to recognize simple patterns in the use made by 2

_—

o

L A e e el

=

1962

prograim of the various blocks of the one level store. In this
way 2 prediction program could forecast the blocks re-
quired in the near future and organize the transfers. By
recording the success or failure of these forecasts the pro-
«ram could be made self-improving. For the matrix multi-
;lication problem discussed above the pattern of use of the
blocks containing matrix C is repeated 80 times, and a
considerable degree of success could be obtained with a
«imple prediction program.

VI. CoNCLUSIONS

A specific system for making a core-drum store combina-
tion appear as a single level store has been described.
While this is the actual system being built for the Atlas
machine the principles involved are applicable to combina-
tions of other types of store. For example, a tunnel diode-
fast core store combination for an even faster machine. An
alternative which was considered for Atlas, but which was
not as attractive economically, was a fast core-slow core
store combination. The system too can be extended to
three levels of storage, and indeed if 10® words of total stor-
age had to be provided then it would be most economical
to provide it on a third level of store such as a file drum.

The automatic system does require additional equip-
ment and introduces some complexity, since it is necessary
to overlap the time taken for address comparison into the
store and machine operating time if it is not to introduce
any extra time delays. Simulated tests have shown that the
organization of drum transfers are reasonably efficient and
other advantages which accrue, such as efficient allocation
of core storage between different programs and store lock
out facilities are also invaluable. No matter how intelli-
gent a programmer may be he can never know how many
programs or peripheral equipments are in operation when
his program is running. The advantage of the automatic
system is that it takes into account the state of the ma-
chine as it exists at any particular time. Furthermore if as
in normal use there is some sort of regular machine rhythm
even through several programs, there is the possibility of
making some sort of prediction with regard to the trans-
fers necessary. This involves no more hardware and will
be done by program. However, this stage will probably be
left until results on the actual system are obtained.

It can be seen that the system is both useful and flexible
in that it can be modified or extended in the manner previ-
ously indicated. Thus despite the increase in equipment,
the advantages which are derived completely justify the
building of this automatic system.

VII. AppENDIX I

ORGANIZATION OF THE ACCESS REQUESTS
70 THE CORE STORE

There are three sources of access requests to the core
store, namely the central machine, the drum, and the tape
systems. In deciding how the sequence of requests from all
three sources are to be serialized and placed in some sort of
order, a number of facts have to be considered. These are

. T——

~ Kilburn et al.: One-Level Storage System

1) All three sources are asynchronous in nature.

2) The drum and tape systems can make requests at a
fairly high rate compared with the store cycle time
of approximately 2 usec. For example, the drum pro-
vides a request every 4 usec and the tape system
every 11 usec when all 8 channels are operative.

3) The drum and tape systems can only be stopped in
multiples of a block length, i.e., 512 words. This
means that any system devised for accessing the core
store must deal with both the average rates of drum
drum and tape requests specified in 2). Only the cen-
tral machine can tolerate requests being stopped at
any time and for any length of time. From these
facts a request priority can be stated which is
a) Drum request.

b) Tape request.

. ¢) Central machine request.

4) A machine request can be accepted by the core stofe,
but because there is no place available to accept the
core store information, its cycle is inhibited and fur-
ther requests held up. In the case of successive divi-
sion orders this time can be as long as 20 psec, in
which case 5 drum requests could be made. To avoid
having an excessive amount of buffer storage for the
drum two techniques are possible:

a) When drums or tapes are operative do not permit
machine requests to be accepted until there is a
place available to put the information.

b) Store the machine request and then permit a drum

or tape request.
The latter scheme has been adopted because it can
be accommodated more conveniently and it saves a
small amount of time. ‘

5) If the central machine is using the private store then
it is desirable for drum and tape transfers to the core
store not to interfere with or slow down the central
machine in any way.

6) When the central machine, drum and tape are shar-
ing the core store then the loss of central machine
speed should be roughly proportional to the activity
of the drum or tape systems. This means that drum
or tape requests must “break” into the normal ma-
chine request channel as and when required.

The system which accommodates all these points is now
discussed. Whenever a drum or tape request occurs inhibit
signals are applied to request channel into the core stack
coordinator and also to the stack request channels from
this coordinator. This results in a “freezing” of the state of
flip-flop F (Fig. 5) and this state is then inspected (Fig. 7,
point X). If the state is “busy” this means that a machine
order has been stopped somewhere between the loading of
the buffer address register (B.A.R.) and the stack request.
Normally this time interval can vary from about 0.5 usec
if there are no stack request holdups, to 20 psec in the case
of certain accumulator holdups. In either case sufficient
time is allowed after the inspection to ensure that the
equivalence operation has been completed. If an equiva-

233

234 IRE TRANSACTIONS ON ELECTRONIC COMPUTERS Apri

j

F FLIPFLOP FROZEN

INSPECT STATE. OF
F FLIRFLOP
A

we aa‘swr

WAIT FOR
EQUIVALENCE
COMPLETED,

A=

STORE MACHINE ORDER. °

FREE% FLIP-FLOP

DRUMTAPE ACCESS . :
™ colne STORE. . = DRUM] TAPE PRICBTY~~

REMOVE STACK REQUEST 24

INHIBIT SIGNAKS)

STACK REQUEST

FOR DRUM/TAPE. DRUM]TAPERMST'
l PS,RMIT SYACK
INHIBITS TO RE-APPLY,
15 THERE A sme% tI
MACHINE ORDER .
b B R
r k } Y APPLY k"ém TS
NO Yis Nofrﬁ‘% EgPELIEEE.D
ALLOW TO PROCEED HA5
(\F POSSIBLE).

%‘g 13
DER B
STACK REQUEST { g

STOREB MACHINE N ¥

L Y

REMOVE
OE r?* CH#‘ REG\L!EST

Fig. 7—Drum and tape break in systems,

lence indication is obtained all the information relevant to
this machine order (i.e.,
stack(s) required and type of stack order) are stored for
future reference. Use is made here of the page digit regis-
ter provided to allow the by-pass on the equivalence cit-
cuitry for instruction accesses. The core store is then made
free for access by the drum or the tape. If the core store
had been found to be free on inspection, the ahove pro-
cedure is omitted.

A drum or tape access (as decided by the priority cir-
cuit) to the core store then occurs, which removes the in-
hibits on the stack request channels. When the stack re-
quest for the drum or tape cycle is initiated these inhibits
are allowed to reapply. At this stage (Fig. 7, point V), if
there is a stored machine order it is allowed to proceed if
possible. The inhibits on the machine request channels
are removed when the stack request for the stored ma-
chine order occurs., If there is no stored machine order
this is done immediately, and the central machine is again
allowed access to the core store. However, another drum
or tape request can arise before the stack request of the

the line address, page digits, -

stored machine order occurs, in particular because this Jo_
ter order may still be held up by the central machine, y;
this is the case the drum or tape is allowed immediate g
cess and a further attempt is made to complete the storeq
machine order when this drum or tape stack request occury,

If the stored machine order was for an operand, the cop.
tent of the page digit register will correspond to the locy.
tion of this operand. The next machine request for an i;.
struction pair will then almost certainly result in a “WronL
page” indication. This is prevented by arranging that th,
next instruction pair access does not by-pass the equiva.
lence circuitry.

The effect on the machine speed when the drum or tape,
are transferring information to or from the core store i
dependent upon two factors. First, upon the proportion of
time during which the buffer register in the core coording.
tor is busy dealing with machine requests, and secondly,
upon the particular stacks being used by the central ma.
chine and the drum or tape. If the computer is obeying »
program with instructions and operands on the fixed o
subsidiary store then the rate of obeying instructions is un-
affected by drum or tape transfers. A drum or tape inter-
rupt occuring when the B.A.R. is free prevents any ma-
chine address being accepted onto this buffer for 1.0 usec
However, if the B.A.R. is busy then the next machine re-
quest to the core store is delayed until 1.8 usec after the
interrupt if different stacks are being used, or until 3.4
usec after the interrupt if the stacks are the same.

When the machine is obeying a program -with instruc-
tions and operands on the core store the slowing down dur-
ing drum transfers can be by a factor of two if instructions,
operands, and drum requests use the same stacks. It is also
possible for the machine to be unaffected. The effect on a
particular sequence of orders can be seen by considering
the one discussed in Section IV and illustrated in Fig. 6.
In this sequence the instructions are on stacks 0 and 1
while the operands are on stacks 2 and 3. If the drum or
tape is transferring alternately to stacks 0 and 1 then the
effect of any interrupt within the 3.2 usec of an instruction
pair is to increase this time by between 0.5 and 3.4 usec
depending upon where the interrupt occurred. The aver-
age increase is 1.8 usec and for a tape transfer with inter-
rupts every 88 usec the computer can obey instructions at
98 per cent of the normal rate. During drum transfers the
interrupts occur every 4 usec which would suggest a slow-
ing down to 60 per cent of normal. However, for any reg-
ular sequence of orders the requests to the core store by
the machine and by the drum rapidly become synchronized
with the result in this particular case that the machine can
still operate at 80 per cent of its normal speed.

ArpENDIX IT
MeTEODS OF DI1VISION OF THE MAIN CORE STORE

The maximum frequency with which requests can be
dealt with by a single stack core store is governed by the
cycle time of the store. If the store is divided into several
stacks which can be cycled independently then the limit

,ji.l.,r‘i

196

imp
red
ent
chi
sele

stru
sing

Atly
by ¢
is d
are
still
add
add
mal
two
cess
an 4
way|
imp
the
fere

syst
ducq
nort
in t
pair
be 4
pair.
to h
read
com

sion
limi
insty
core

gran|
oper

1962 Kilburn et al.: One-Level Storage System 235

imposed on the speed of the machine by the core store is
reduced. The degree of division which is chosen is depend-
ent upon the ratio of core store cycle time to other ma-
chine operations and also upon the cost of the multiple
selection mechanisms required.

Considering ‘a sequence of orders in which both the in-
struction and operand are in the core store, then for a
single stack store the limit imposed on the operating speed
by the store is two cycle times per order, 4.e., 4 psec in
Atlas. This is significantly larger than the limits imposed
by other sections of the computer (Section IV). If the store
is divided into two stacks and instructions and operands
are separated, then the limit is reduced to 2 usec which is
still rather high. The provision of two stacks permits the
addressing of the store to be arranged so that successive
addresses are in alternate stacks. It is therefore possible by
making requests to both stacks at the same time to read
two instructions together, so reducing the number of ac-
cess times to three per instruction pair. Unfortunately such
an arrangement of the store means that operands are al-
ways on the same stacks as instruction pairs, and the limit
imposed by the cycle time is still 2 usec per order even if
the two operand requests-in the instruction pair are to dif-
ferent stacks and occur at the same time.

Division into any number of stacks with the addressing
system working through each stack in turn cannot re-
duce the limit below 2 wsec since successive instructions
normally occur in successive addresses and are therefore
in the same stack. However, four stacks arranged in two
pairs reduces the limit to 1 usec as the operands can always
be arranged to be on different stacks from the instruction
pairs. In order to reduce the limit to 0.5 usec it is necessary
to have eight stacks arranged in two sets of four and te
read four instructions at once, which would increase the
complexity of the central machine,

The limit of 1 wsec is quite sufficient and further divi-
sion with the stacks arranged in pairs only enables the
limit to be more easily obtained by suitable location of the
instructions and operands.

The location of instructions and operands within the
core store is under the control of the drum transfer pro-
gram; thus when there are several stacks instructions and
operands are separated wherever possible. Under these

o e e e I "
: . ; I
. . i .
o aAD ONE STACK | [L R 4:0
2 ; |
o) t H
Q
] { {
3 H B
g : l 30
~ ! L
% : i i !
g | 5. TWO STACKS "(PAIRDo e : 2
%ol 2:0 TWO STAGKS :(SNGLE) l 20
o . +
g |lts FOUR,_STACKS ' (PAIRY ' 156
& |z mHr stac (paR) l :
ol | | |
E ' !
= !
E ; i i
i R U (U
o) =

6 24
NUMBER OF PAGES OF OPERANDS

F1g 8—Limit imposed by cycle time on operating speed
for difficult divisions of the core store.

conditions it is possible to calculate the limit imposed on
the operating speed by the cycle time for different divisions
of the core store. The results are shown in Fig. 8, for stacks
arranged in pairs instructions are read in pairs and in all
cases both instructions and operands are assumed to be on
the core store. Operands are assumed to be selected at ran-
dom from the operand space, for instance in the case of two
stacks arranged as a pair, successive operand requests have
equal probability of being to the same stack or to alternate
stacks. '

The limit imposed by a four stack store is never severe
compared with other limitations, for example the sequence
of floating point addition orders discussed in Section IV
required 1.6 usec per order with ideal distribution of in-
structions and operands. Division into eight stacks, al-
though it reduces the limit, will not have an equivalent
effect on the over-all operating speed, and such a division
was not considered to be justified.

ACKNOWLEDGMENT

The authors gratefully acknowledge the contributions -

made to this work by all members of the Atlas computer
team at both Manchester University and Ferranti Ltd.

e T 52

