
How to Use MATLAB

A Brief Introduction

MATLAB Working Environments

2

Some Useful Commands
n help % list all the topics
n clear % remove all the data in current session
n ; (semicolon) % prevent commands from outputing results
n % (percent sign) % comments line
n clc % clears the screen

3

n clc % clears the screen

Vectors
n A row vector in MATLAB can be created by an explicit list, starting with a left bracket,

entering the values separated by spaces (or commas) and closing the vector with a right
bracket.

n A column vector can be created the same way, and the rows are separated by semicolons.
n Example:

>> x = [0 0.25*pi 0.5*pi 0.75*pi pi]

4

>> x = [0 0.25*pi 0.5*pi 0.75*pi pi]
x =

0 0.7854 1.5708 2.3562 3.1416
>> y = [0; 0.25*pi; 0.5*pi; 0.75*pi; pi]
y =

0
0.7854
1.5708
2.3562
3.1416

x is a row vector.

y is a column vector.

Vectors (con’t…)
n Vector Addressing – A vector element is addressed in MATLAB with an integer
index enclosed in parentheses.

n Example:
>> x(3)
ans =
1.5708 ç 3rd element of vector x

5

1.5708

ç 1st to 3rd elements of vector x

n The colon notation may be used to address a block of elements.
(start : increment : end)

start is the starting index, increment is the amount to add to each successive index, and end
is the ending index. A shortened format (start : end) may be used if increment is 1.

n Example:
>> x(1:3)
ans =

0 0.7854 1.5708

NOTE: MATLAB index starts at 1.

ç 3rd element of vector x

Vectors (con’t…)

Some useful commands:

x = start:end create row vector x starting with start, counting by
one, ending at end

x = start:increment:end create row vector x starting with start, counting by

6

x = start:increment:end create row vector x starting with start, counting by
increment, ending at or before end

linspace(start,end,number) create row vector x starting with start, ending at
end, having number elements

length(x) returns the length of vector x

y = x’ transpose of vector x

dot (x, y) returns the scalar dot product of the vector x and y.

Array Operations

n Scalar-Array Mathematics
For addition, subtraction, multiplication, and division of an array by a

scalar simply apply the operations to all elements of the array.
n Example:

>> f = [1 2; 3 4]

7

>> f = [1 2; 3 4]
f =

1 2
3 4

>> g = 2*f – 1
g =

1 3
5 7

Each element in the array f is
multiplied by 2, then subtracted
by 1.

Array Operations (con’t…)
n Element-by-Element Array-Array Mathematics.

Operation Algebraic Form MATLAB

Addition a + b a + b

Subtraction a – b a – b

8

Subtraction a – b a – b

Multiplication a x b a .* b

Division a ÷ b a ./ b

Exponentiation ab a .^ b

n Example:
>> x = [1 2 3];
>> y = [4 5 6];
>> z = x .* y
z =

4 10 18

Each element in x is multiplied by
the corresponding element in y.

Matrices

§ A Matrix array is two-dimensional, having both multiple rows and multiple columns,
similar to vector arrays:

§ it begins with [, and end with]
§ spaces or commas are used to separate elements in a row
§ semicolon or enter is used to separate rows.

9

A is an m x n matrix.

•Example:
>> f = [1 2 3; 4 5 6]
f =
1 2 3
4 5 6

>> h = [2 4 6
1 3 5]
h =
2 4 6
1 3 5the main diagonal

Matrices (con’t…)
n Matrix Addressing:

-- matrixname(row, column)
-- colon may be used in place of a row or column reference to select
the entire row or column.

recall:n Example:

10

recall:
f =

1 2 3
4 5 6

h =
2 4 6
1 3 5

n Example:

>> f(2,3)

ans =

6

>> h(:,1)

ans =

2

1

Matrices (con’t…)
Some useful commands:

zeros(n)
zeros(m,n)

ones(n)

returns a n x n matrix of zeros
returns a m x n matrix of zeros

returns a n x n matrix of ones

11

ones(n)
ones(m,n)

size (A)

length(A)

returns a n x n matrix of ones
returns a m x n matrix of ones

for a m x n matrix A, returns the row vector [m,n]
containing the number of rows and columns in
matrix.

returns the larger of the number of rows or
columns in A.

Matrices (con’t…)

Transpose B = A’

Identity Matrix eye(n) è returns an n x n identity matrix
eye(m,n) è returns an m x n matrix with ones on the main
diagonal and zeros elsewhere.

Addition and subtraction C = A + B

more commands

12

Addition and subtraction C = A + B
C = A – B

Scalar Multiplication B = αA, where α is a scalar.

Matrix Multiplication C = A*B

Matrix Inverse B = inv(A), A must be a square matrix in this case.
rank (A) è returns the rank of the matrix A.

Matrix Powers B = A.^2 è squares each element in the matrix
C = A * A è computes A*A, and A must be a square matrix.

Determinant det (A), and A must be a square matrix.

A, B, C are matrices, and m, n, α are scalars.

Plotting

n For more information on 2-D plotting, type help graph2d
n Plotting a point:

>> plot (variablename, ‘symbol’)

§ Example : Complex number

13

§ Example : Complex number
>> z = 1 + 0.5j;
>> plot (z, ‘.’)

Plotting (con’t…)

n Plotting Curves:
n plot (x,y) – generates a linear plot of the values of x (horizontal axis)

and y (vertical axis).
n semilogx (x,y) – generate a plot of the values of x and y using a

logarithmic scale for x and a linear scale

14

logarithmic scale for x and a linear scale
for y

n semilogy (x,y) – generate a plot of the values of x and y using a
linear scale for x and a logarithmic scale for y.

n loglog(x,y) – generate a plot of the values of x and y using
logarithmic scales for both x and y

n Subplots:
n subplot (m, n, p) – m by n grid of windows, with p specifying

the current plot as the pth window

Plotting (con’t…)
n Example: (polynomial function)

plot the polynomial using linear/linear scale, log/linear scale, linear/log scale, & log/log
scale:

y = 2x2 + 7x + 9% Generate the polynomial:
x = linspace (0, 10, 100);
y = 2*x.^2 + 7*x + 9;

15

% plotting the polynomial:
figure (1);
subplot (2,2,1), plot (x,y);
title ('Polynomial, linear/linear scale');
ylabel ('y'), grid;
subplot (2,2,2), semilogx (x,y);
title ('Polynomial, log/linear scale');
ylabel ('y'), grid;
subplot (2,2,3), semilogy (x,y);
title ('Polynomial, linear/log scale');
xlabel('x'), ylabel ('y'), grid;
subplot (2,2,4), loglog (x,y);
title ('Polynomial, log/log scale');
xlabel('x'), ylabel ('y'), grid;

Plotting (con’t…)

16

Plotting (con’t…)
n Adding new curves to the existing graph:
n Use the hold command to add lines/points to an existing plot.

n hold on – retain existing axes, add new curves to current axes. Axes are
rescaled when necessary.

n hold off – release the current figure window for new plots

17

n Grids and Labels:

Command Description

grid on Adds dashed grids lines at the tick marks

grid off removes grid lines (default)

grid toggles grid status (off to on, or on to off)

title (‘text’) labels top of plot with text in quotes

xlabel (‘text’) labels horizontal (x) axis with text is quotes

ylabel (‘text’) labels vertical (y) axis with text is quotes

text (x,y,’text’) Adds text in quotes to location (x,y) on the current axes, where (x,y) is in
units from the current plot.

Plot3
t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t);
grid on
axis square

18

Flow Control
n Simple if statement:

if logical expression
commands

end
n Example: (Nested)

if d <50
count = count + 1;

19

if d <50
count = count + 1;
disp(d);
if b>d

b=0;
end

end
n Example: (else and elseif clauses)

if temperature > 100
disp (‘Too hot – equipment malfunctioning.’)

elseif temperature > 90
disp (‘Normal operating range.’);

elseif (‘Below desired operating range.’)
else

disp (‘Too cold – turn off equipment.’)
end

Flow Control (con’t…)
n The switch statement:

switch expression
case test expression 1

commands
case test expression 2

commands
otherwise

20

commands
otherwise

commands
end

n Example:
switch interval < 1

case 1
xinc = interval /10;

case 0
xinc = 0.1;

end

Loops

n for loop
for variable = expression
commands

end

•Example (for loop):
for t = 1:5000

y(t) = sin (2*pi*t/10);
end

•Example (while loop):
EPS = 1;

21

n while loop
while expression

commands
end

EPS = 1;
while (1+EPS) >1

EPS = EPS/2;
end
EPS = 2*EPS

n the break statement
break – is used to terminate the execution of the loop.

M-Files

n The M-file is a text file that consists a group of
MATLAB commands.

All MATLAB commands are M-files.

22

User-Defined Function
n Add the following command in the beginning of your m-file:
function [output variables] = function_name (input variables);

NOTE: the function_name should
be the same as your file name to

23

be the same as your file name to
avoid confusion.

§ calling your function:
-- a user-defined function is called by the name of the m-file
-- type in the m-file name like other pre-defined commands.

§ Comments:
-- The first few lines should be comments, as they will be
displayed if help is requested for the function name. the first
comment line is reference by the lookfor command.

Random Variable

n randn
n randi
n rand

24

Random Variable

v=25; %variance
m=10; %mean
x=sqrt(v)*randn(1, 1000) + m*ones(1, 1000);
figure;

25

figure;
plot (x);
grid;
xlabel ('Sample Index');
ylabel ('Amplitude');
title ('One thousands samples of a Gaussian random

variable(mean=10, standard deviation=5)');

Exp2-Random Variable

20

25
One thousands samples of a Gaussian random variable(mean=10, standard deviation=5)

26

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5

10

15

Sample Index

A
m
pl
itu
de

