ELectrical Naturals

Ley, Lut+, Rhburg

These four branch currents are independent of each other, for if we

Fig. 1-15. A four-mesh problem.

Fig. 1-16. An insufficient number of meshes for the circuit of Fig. 1-15.

identify the branch current i_a with the mesh current i_1 , i_b with i_2 , i_c with i_3 , and i_d with i_4 , it is clear from the figure that each of these mesh currents can be given a value that will be independent of the others. Kirchhoff's current law will thus be satisfied at every node since any mesh current entering a node also leaves it. The network equations can therefore be written in terms of the four mesh currents i_1 , i_2 , i_3 , and i_4 .

$$(R_{1} + R_{2} + R_{3})i_{1} - R_{3}i_{2} - R_{4}i_{4} = y$$

$$-R_{5}i_{1} + (R_{2} + R_{4} + L_{1}D)i_{2} - R_{5}i_{3} = 0$$

$$-R_{5}i_{2} + \left(R_{4} + R_{4} + \frac{1}{C_{1}D}\right)i_{5} - R_{4}i_{4} = 0 \quad (1-46)$$

$$-R_{5}i_{1} - R_{4}i_{5} + (R_{2} + R_{4} + L_{2}D)i_{4} = 0$$
Obviously, the student model of the

Obviously, the student would not attempt to solve the network of Fig. 1-15 in terms of only the mesh currents i_1 , i_2 , and i_3 , for not all the branches would be included in the resulting equations (e.g., the branch containing L_2). However, if the mesh currents were drawn as shown in Fig. 1-16, every branch would be included and the student might be

Kirchhoff's Laws lead to Simultaneous Linear Egns.

CHEMICAL

RGURE 12.2

A seady state, completely
aixed reactor with two inflow
pipes and one outflow pipe.
The flows Q are in cubic meters
per minute, and the concentratons c are in milligrams per
abic meter.

TOURE 12.3 Treactors linked by pipes.

CHAPRA & CANALE

Figure P12.7
A chloride balance for the
Great Lakes. Numbered arrows
are direct inputs.

1ECHAMIAL

IGURE 12.4

GURE 12.5

derminate truss.

bos on a statically determi-

Therefore, for node 1,

$$\Sigma F_H = 0 = -F_1 \cos 30^\circ + F_3 \cos 60^\circ + F_{1,h}$$

$$\Sigma F_V = 0 = -F_1 \sin 30^\circ - F_3 \sin 60^\circ + F_{1,v}$$

for node 2,

$$\Sigma F_H = 0 = F_2 + F_1 \cos 30^\circ + F_{2,h} + H_2$$

$$\Sigma F_V = 0 = F_1 \sin 30^\circ + F_{2,v} + V_2$$

for node 3,

$$\Sigma F_H = 0 = -F_2 - F_3 \cos 60^\circ + F_{3,h}$$

$$\Sigma F_V = 0 = F_3 \sin 60^\circ + F_{3,v} + V_3$$

Numical papes in C, Presset el.

2.11 Is Matrix Inversion an N³ Process?

We close this chapter with a little entertainment, a bit of algorithmic prestidigitation which probes more deeply into the subject of matrix inversion. We start with a seemingly simple question:

How many individual multiplications does it take to perform the matrix multiplication of two 2×2 matrices,

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$
(2.11.1)

Eight, right? Here they are written explicitly:

$$c_{11} = a_{11} \times b_{11} + a_{12} \times b_{21}$$

$$c_{12} = a_{11} \times b_{12} + a_{12} \times b_{22}$$

$$c_{21} = a_{21} \times b_{11} + a_{22} \times b_{21}$$

$$c_{22} = a_{21} \times b_{12} + a_{22} \times b_{22}$$

$$(2.11.2)$$

Do you think that one can write formulas for the c's that involve only seven multiplications? (Try it yourself, before reading on.)

Such a set of formulas was, in fact, discovered by Strassen [1]. The formulas are:

$$Q_{1} \equiv (a_{11} + a_{22}) \times (b_{11} + b_{22})$$

$$Q_{2} \equiv (a_{21} + a_{22}) \times b_{11}$$

$$Q_{3} \equiv a_{11} \times (b_{12} - b_{22})$$

$$Q_{4} \equiv a_{22} \times (-b_{11} + b_{21})$$

$$Q_{5} \equiv (a_{11} + a_{12}) \times b_{22}$$

$$Q_{6} \equiv (-a_{11} + a_{21}) \times (b_{11} + b_{12})$$

$$Q_{7} \equiv (a_{12} - a_{22}) \times (b_{21} + b_{22})$$

$$(2.11.3)$$

in terms of which

$$c_{11} = Q_1 + Q_4 - Q_5 + Q_7$$

$$c_{21} = Q_2 + Q_4$$

$$c_{12} = Q_3 + Q_5$$

$$c_{22} = Q_1 + Q_3 - Q_2 + Q_6$$
(2.11.4)

Applied recursively to submatrices,
$$O(N^{log_*7}) = O(N^{2.807})$$