X806 16 real mode

(or at least enough for cos318
project 1)

Overview

e Preliminary information - How to find help
e The toolchain
e The machine

If you only remember one thing: gcc -S

e the -S (capital S) flag causes gcc to ouput assembly.

Preliminary Information

e Assembly can be hard

e Development strategies conquer risk:
o Write small test cases.
o Write functions, test each separately.
o Print diagnostics frequently.

e Think defensively!
o and the interweb is helpful too.

The Interwebs as a resource.

e The internet offers much information that seems confusing
or contradictory.
e How do you sort out information "in the wild?"

Syntax

e There are (at least) two different syntaxes for x86 assembly
language: AT&T and Intel.

o AT&T: opcodes have a suffix to denote data type, use
sigils, and place the destination operand on the right.

o Intel: operands use a keyword to denote data type, no
sigils, destination operand is leftmost.

Example: AT&T vs Intel

push %bp

mov %sp,%bp
sub $0x10,%sp
movw
OXZOOb(O/obX),O/oSi
mov $0x4006,%di
mov $0x0,%ax
call printf

leaveq

retq

In this class, use AT&T!

push bp

mov bp,sp

sub sp,0x10

mov si,WWORD
PTR [bx+0x200Db]

mov di,0x4006

mov ax,0x0

call printf

leave

ret

Versions of the architecture

e X86 won't die. All backwards compatible.
o 8086 -> 16bit, Real
o 80386 / ia32 -> 32bit, Protected
o X86 64 -> 64bit, Protected
e If you find an example:
o For which architecture was it written?

The Register Test

e If you see "%rax", then 64-bit code; else
e If you see "%eax", then 32-bit code; else
e You are looking at 16-bit code.

Overview

e Preliminary information - How to find help
e The toolchain
e The machine

The toolchain

e The lab has all the software you need. You can connect
remotely via ssh -X labpc-yy

e All software is available for free on *nix, Mac OS X, and
probably windows.

e |f you use a 64-bit machine, you may have problems.
o Ask me offline.

Text editors

e You should know how to use an editor
e Vi and emacs are popular choices...
o ...and you should learn them, if for no other reason than
to understand geek jokes.
m s/bug/feature/
m M-x psychoanalyze-pinhead

The Assembler: as or gas

e The cycle:
o You write an assembly language text file (.s)
o run: as --32 -g source.s -0 0bj.o

e A disassembler is also useful:
o objdump -D -M i8086 obj.o > obj.s

e \We have provided a makefile to make this painless

bochs

e bochs ("box") is a free, open-source emulator of a complete
PC
e How do we use it?
o Bochs treats a file as a disk in the emulated computer.
o The computer will boot off of it.
e bochs will be discussed more in later precepts.

Overview

e Preliminary information - How to find help
e The toolchain
e The machine

Scope

e This is not an exhaustive list of x86 features.
o It's just enough to get you rolling.

e |n fact, | want to discourage some of the more advanced
uses. If you keep it simple, it will be easier to develop,
debug, and grade.

Again: gcc -S

e gcc -S -m32 - fomit-frame-pointer test.c -o test.s

About optimizing your code.

e DON"T OPTIMIZE YOUR CODE!N1 11111
o | will have to read your code.

e Please keep-it-simple.
o Memory access in separate instructions.
o Use .EQU to give names to constants.
o Comments that say what you're trying to do.

Caution: x86 is wonky.

e a lot of instructions, many redundant.
e very few registers, and funny rules about what each may do.
e Real vs Protected modes; Segmented Memory!

e Here, we focus on a sane subset of x86.

The syntax of a .s file

e # comment
e Register names have the %-sigil, eg %ax
e Literals have the $-sigil, eg $0x1234
o Literals without the $-sigil mean memory!
e label:
e Instructions may have suffixes -b (byte, 8-bit) or -w (word,
16-bit).

Xx86 106 Registers

e General purpose registers:
o Y%ax, %bx, %cx, %dx
o %a h is the most-significant byte
o %alis the least.
e Pointer registers:
o %si, %di, %sp, %bp, %ip
e Segment registers:
o %ds, %es, %cs, %ss
e Control register:
o Y%flags

Segmented Memory on x86

e Good news: you can mostly ignore it at the local instruction
level.

e Bad news: you need to understand it to complete this
project.

e Why is it here? In the good-ole' days...
o pointers were small, and
o we didn't have memory management units.

Segmented Memory: Why?

e Some machine instructions must contain memory locations.
e But, your compiler cannot know what other programs are
running...
o ...or what addresses they use.
e A layer of abstraction between instructions and physical
memory solves this problem.
o Put the code anywhere in physical memory, but give it
the logical address it desires.

Segmented Memory on x86

e Segmented memory is a hack.
e Makes pointers slightly larger.
e Provides rudimentary support for relocation.

e Intel's solution:
o Memory is many overlapping segments.
o A pointer is an address within a segment.
o A segment register adds 4-bits to the address space.

Segmented Memory on x86

e Suppose segment register %ds holds a segment number
e Suppose register %bx holds an address.
e Then %ds:%bx is a logical memory address.

e The physical address in memory is:
o %ds:%bx == 16 * %ds + %bx

e The pointer is 4 bits wider.

Segments as Relocation

e Observe that:
o Xy == (x+1):(y-16)
o Xy == (x-1):(y+16)

e Say you have code that assumes it is at memory address
Zero...

e ...but, we're using address zero for something else...

e Adjust segment registers, and give the illusion that the code
Is at the desired address.

How segments help us in P1

e The bootloader must move itself to another physical
memory location, as to make room for the kernel.

e Segmentation allows us to move, but keep logical memory
addresses the same.

How segments hurt us in P1

e If the kernel is bigger than a segment (64KiB), then you will
need to perform several disk reads to different segments :(
o This is why support for >128 sectors is extra credit.

Practical Ex. of Segments

e For project 1, we write bootblock.s

e The assembler assumes logical address 0, but on x86 that
address Is reserved.

e Instead, BIOS loads the bootloader to 0x0:0x7c00

e Although the physical memory address has changed, 0xO:
0x7c00==0x07c0:0x0.

e If you read/write memory through segment 0x07cO,
everything works as usual...

Practical Ex. of Segments

e \We want to the kernel at physical address 0x0:0x1000.
o If the kernel is >27KiB,then boot loader and kernel overlap!
e Need to relocate the boot loader.

X806 Instructions

e Next, I'm going to show a bunch of instructions and their
semantics.
e |'ll write a general form, then the RTL semantics.
o Memory
o Stacks
o Arithmetic
o Control

x86: Memory

e movw ptr, r
o r «— Mem[ptr] (16-bit)
e Movw r,ptr
o Mem[ptr] < r (16-bit)
e wWhere, ptr is an address expression:
o 0x1234 - absolute address (no $-sigil)
o (r) - address specified in register.
o 0x1234(r) - r+0x1234
o efc
e In segment %ds by default!

x86: More Memory

e lodsw
o Y%ax «— Mem[%ds:%si |
o Ysi++
e MOVSwW
o YoMem[%es:%di | — Y%Mem[%ds:%si]
O Ysi++
o %di++
e may prefix with rep:
o rep foo : while(%cx =0) { foo ; %cx--; }

x86: Stacks

e push X
o --%sp
o Mem[%ss:%sp] <« x
® POp X
o X «— Mem]| 0/oSSZ(yoSp]
o Y%sp++

x86: Arithmetic

e addw / subw X,y
oy «—Yy+/-X
e mulw r
o YodXx:%ax «— %ax *r
o divw r
o0 Yoax «— %dx:%ax divr
0 %dXx «— %dx:%ax mod r

e inc/decr
Or «r+/-1

x86: Control

e CMpPW X,y
o if y-x == 0, set %flags<z> 1
o if y-x <0, set %flags<c> «— 1
e mp <label>
o %ip < label

e |z <label>

o if %flags<z>==1, then %ip<«Ilabel
e jCc <label>

o if %flags<c>==1, then %ip<«Ilabel

x86: Calls

e call <label>
o push %ip
o jmp label
o ret
o pop %ip

x86: More Control

e Segments aren't just for data!
o %cs:%ip points to next instruction.

e |jmp <imm1>, <imm2>
o %cs — imm1
o %ip «— imm2
o Iret
o pop %ip
o pop %cCs

x86: Software interrupts!

e int <immediate> : invoke a software interrupt.
o int 0x10 - console output
o int 0x13 - disk /O
o int 0x16 - keyboard input
e Each interrupt offers several functions.
e Specific function chosen by %ah
o e.g. int 0x10, function %ah=02 means read disk sector.
e int 0x21 CANNOT BE USED.

Passing parameters to fcns

e No standard.
e High-level languages use stack frames.

e For P1, | recommend:
o pass the first parameter in %ax, the second in %bx, and
SO on.
o place the return value in %ax.
o (and write comments)

x86: Common Control Patterns

e How do we combine these instructions into programs??

e if-then-else
e for-loop

x86: If-then-else

if(x <10) { foo } else { bar }

movw ($x), %ax

cmpw $0xa, %ax

jnc elseClause
thenClause:

foo

jmp endlIf
elseClause:

bar
endlf:

x86: for-loops

for(x=0; x<10; x++) { foo }

movw $0, %cx # use reg %cx to hold x
continuelLoop:

foo

iIncw %cx

cmpw $0xa, %cx

jc continuelLoop
breakLoop:

x86: Troubleshooting.

e What is the difference:
o movw $label, %ax
o movw label, %ax
e Why can't | write:
o movw $label, %es
e How do | compute the size of something:
o before:
O
o after:
o mov $(after - before), %ax

Assembler Directives

e Begin with a period (.) Not instructions!

.equ name,value

o "equate”, just like #define name value

.code16

o assemble code as 16-bit instructions

.byte <imm>

o emit the byte imm into the object file

word <imm>

o emit the 16-bit word imm.

.string "Hello World\n\r\O"

o emit the string.

Segments in a .s file

e Organized into segments which can be relocated
iIndependently

e .text begins the "text" (or code) segment

e .data begins the "data" segment

Memory on a PC

e 0:0--0:3ff: Reserved. IVT
e 0:400--0:4ff: Reserved. Various.

e 0:500--9000:ffff: Available
e b000:0--c000:0: Video Memory
e Everything else is reserved by various ROMs.

Disks on an PC

e Disks:
o are divided into cylinders
m are divided into heads
m are divided into sectors
m are 512 bytes.
e Disk parameters can be queried from BIOS.
e WWe would like to linearize disk addressing
o "Logical Block Addressing” one way...

Conclusion

e gcc -S
e Keep it simple!
e segments OVERLAP and can be used for relocation

e And... we're here to help.

