
x86_16 real mode

 (or at least enough for cos318
project 1)

Overview

Preliminary information - How to find help
The toolchain
The machine

If you only remember one thing: gcc -S

the -S (capital S) flag causes gcc to ouput assembly.

Preliminary Information

Assembly can be hard
Development strategies conquer risk:

Write small test cases.
Write functions, test each separately.
Print diagnostics frequently.

Think defensively!
and the interweb is helpful too.

The Interwebs as a resource.

The internet offers much information that seems confusing
or contradictory.
How do you sort out information "in the wild?"

Syntax

There are (at least) two different syntaxes for x86 assembly
language: AT&T and Intel.

AT&T: opcodes have a suffix to denote data type, use
sigils, and place the destination operand on the right.

Intel: operands use a keyword to denote data type, no
sigils, destination operand is leftmost.

Example: AT&T vs Intel
push %bp
mov %sp,%bp
sub $0x10,%sp
movw
 0x200b(%bx),%si
mov $0x4006,%di
mov $0x0,%ax
call printf
leaveq
retq

In this class, use AT&T!

push bp
mov bp,sp
sub sp,0x10
mov si,WORD
 PTR [bx+0x200b]
mov di,0x4006
mov ax,0x0
call printf
leave
ret

Versions of the architecture
x86 won't die. All backwards compatible.

8086 -> 16bit, Real
80386 / ia32 -> 32bit, Protected
x86_64 -> 64bit, Protected

If you find an example:
For which architecture was it written?

The Register Test

If you see "%rax", then 64-bit code; else
If you see "%eax", then 32-bit code; else
You are looking at 16-bit code.

Overview

Preliminary information - How to find help
The toolchain
The machine

The toolchain

The lab has all the software you need. You can connect
remotely via ssh -X labpc-yy

All software is available for free on *nix, Mac OS X, and
probably windows.

If you use a 64-bit machine, you may have problems.

Ask me offline.

Text editors

You should know how to use an editor
vi and emacs are popular choices...

...and you should learn them, if for no other reason than
to understand geek jokes.

s/bug/feature/
M-x psychoanalyze-pinhead

The Assembler: as or gas

The cycle:
You write an assembly language text file (.s)
run: as --32 -g source.s -o obj.o

A disassembler is also useful:
objdump -D -M i8086 obj.o > obj.s

We have provided a makefile to make this painless

bochs

bochs ("box") is a free, open-source emulator of a complete
PC
How do we use it?

Bochs treats a file as a disk in the emulated computer.
The computer will boot off of it.

bochs will be discussed more in later precepts.

Overview

Preliminary information - How to find help
The toolchain
The machine

Scope

This is not an exhaustive list of x86 features.
It's just enough to get you rolling.

In fact, I want to discourage some of the more advanced
uses. If you keep it simple, it will be easier to develop,
debug, and grade.

Again: gcc -S

gcc -S -m32 - fomit-frame-pointer test.c -o test.s

About optimizing your code.

DON"T OPTIMIZE YOUR CODE!!!111!!!!
I will have to read your code.

Please keep-it-simple.

Memory access in separate instructions.
Use .EQU to give names to constants.
Comments that say what you're trying to do.

Caution: x86 is wonky.

a lot of instructions, many redundant.

very few registers, and funny rules about what each may do.

Real vs Protected modes; Segmented Memory!

Here, we focus on a sane subset of x86.

The syntax of a .s file

comment
Register names have the %-sigil, eg %ax
Literals have the $-sigil, eg $0x1234

Literals without the $-sigil mean memory!
label:
Instructions may have suffixes -b (byte, 8-bit) or -w (word,
16-bit).

x86_16 Registers

General purpose registers:
%ax, %bx, %cx, %dx
%a h is the most-significant byte
%a l is the least.

Pointer registers:
%si, %di, %sp, %bp, %ip

Segment registers:
%ds, %es, %cs, %ss

Control register:
%flags

Segmented Memory on x86

Good news: you can mostly ignore it at the local instruction
level.

Bad news: you need to understand it to complete this
project.

Why is it here? In the good-ole' days...

pointers were small, and
we didn't have memory management units.

Segmented Memory: Why?

Some machine instructions must contain memory locations.
But, your compiler cannot know what other programs are
running...

...or what addresses they use.
A layer of abstraction between instructions and physical
memory solves this problem.

Put the code anywhere in physical memory, but give it
the logical address it desires.

Segmented Memory on x86

Segmented memory is a hack.
Makes pointers slightly larger.
Provides rudimentary support for relocation.

Intel's solution:

Memory is many overlapping segments.
A pointer is an address within a segment.
A segment register adds 4-bits to the address space.

Segmented Memory on x86

Suppose segment register %ds holds a segment number
Suppose register %bx holds an address.
Then %ds:%bx is a logical memory address.

The physical address in memory is:

%ds:%bx == 16 * %ds + %bx

The pointer is 4 bits wider.

Segments as Relocation

Observe that:
x:y == (x+1):(y-16)
x:y == (x-1):(y+16)

Say you have code that assumes it is at memory address
zero...
...but, we're using address zero for something else...
Adjust segment registers, and give the illusion that the code
is at the desired address.

How segments help us in P1

The bootloader must move itself to another physical
memory location, as to make room for the kernel.
Segmentation allows us to move, but keep logical memory
addresses the same.

How segments hurt us in P1

If the kernel is bigger than a segment (64KiB), then you will
need to perform several disk reads to different segments :(

This is why support for >128 sectors is extra credit.

Practical Ex. of Segments

For project 1, we write bootblock.s
The assembler assumes logical address 0, but on x86 that
address is reserved.
Instead, BIOS loads the bootloader to 0x0:0x7c00
Although the physical memory address has changed, 0x0:
0x7c00==0x07c0:0x0.

If you read/write memory through segment 0x07c0,
everything works as usual...

Practical Ex. of Segments

We want to the kernel at physical address 0x0:0x1000.
If the kernel is >27KiB,then boot loader and kernel overlap!
Need to relocate the boot loader.

x86 Instructions

Next, I'm going to show a bunch of instructions and their
semantics.
I'll write a general form, then the RTL semantics.

Memory
Stacks
Arithmetic
Control

x86: Memory

movw ptr, r
r ← Mem[ptr] (16-bit)

movw r,ptr
Mem[ptr] ← r (16-bit)

where, ptr is an address expression:
0x1234 - absolute address (no $-sigil)
(r) - address specified in register.
0x1234(r) - r+0x1234
etc

In segment %ds by default!

x86: More Memory

lodsw
%ax ← Mem[%ds:%si]
%si++

movsw
%Mem[%es:%di] ← %Mem[%ds:%si]
%si++
%di++

may prefix with rep:
rep foo : while(%cx != 0) { foo ; %cx--; }

x86: Stacks

push x
--%sp
Mem[%ss:%sp] ← x

pop x
x ← Mem[%ss:%sp]
%sp++

x86: Arithmetic

addw / subw x,y
y ← y +/- x

mulw r
%dx:%ax ← %ax * r

divw r
%ax ← %dx:%ax div r
%dx ← %dx:%ax mod r

inc / dec r

r ← r +/- 1

x86: Control

cmpw x,y
if y-x == 0, set %flags<z> ←1
if y-x < 0, set %flags<c> ← 1

jmp <label>
%ip ← label

jz <label>
if %flags<z>==1, then %ip←label

jc <label>
if %flags<c>==1, then %ip←label

x86: Calls

call <label>
push %ip
jmp label

ret
pop %ip

x86: More Control

Segments aren't just for data!
%cs:%ip points to next instruction.

ljmp <imm1>, <imm2>

%cs ← imm1
%ip ← imm2

lret
pop %ip
pop %cs

x86: Software interrupts!

int <immediate> : invoke a software interrupt.
int 0x10 - console output
int 0x13 - disk I/O
int 0x16 - keyboard input

Each interrupt offers several functions.
Specific function chosen by %ah

e.g. int 0x10, function %ah=02 means read disk sector.
int 0x21 CANNOT BE USED.

Passing parameters to fcns

No standard.

High-level languages use stack frames.

For P1, I recommend:
pass the first parameter in %ax, the second in %bx, and
so on.
place the return value in %ax.
(and write comments)

x86: Common Control Patterns

How do we combine these instructions into programs?

if-then-else
for-loop

x86: if-then-else

if(x < 10) { foo } else { bar }

 movw ($x), %ax
 cmpw $0xa, %ax
 jnc elseClause
thenClause:
 foo
 jmp endIf
elseClause:
 bar
endIf:

x86: for-loops

for(x=0; x<10; x++) { foo }

 movw $0, %cx # use reg %cx to hold x
continueLoop:
 foo
 incw %cx
 cmpw $0xa, %cx
 jc continueLoop
breakLoop:

x86: Troubleshooting.

What is the difference:
movw $label, %ax
movw label, %ax

Why can't I write:
movw $label, %es

How do I compute the size of something:
before:
 ...
after:
 mov $(after - before), %ax

Assembler Directives

Begin with a period (.) Not instructions!
.equ name,value

"equate", just like #define name value
.code16

assemble code as 16-bit instructions
.byte <imm>

emit the byte imm into the object file
.word <imm>

emit the 16-bit word imm.
.string "Hello World\n\r\0"

emit the string.

Segments in a .s file

Organized into segments which can be relocated
independently
.text begins the "text" (or code) segment
.data begins the "data" segment

Memory on a PC

0:0--0:3ff: Reserved. IVT
0:400--0:4ff: Reserved. Various.

0:500--9000:ffff: Available
b000:0--c000:0: Video Memory
Everything else is reserved by various ROMs.

Disks on an PC

Disks:
are divided into cylinders

are divided into heads
are divided into sectors

are 512 bytes.
Disk parameters can be queried from BIOS.
We would like to linearize disk addressing

"Logical Block Addressing" one way...

Conclusion

gcc -S

Keep it simple!

segments OVERLAP and can be used for relocation

And... we're here to help.

