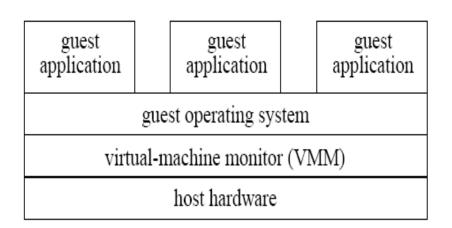
Virtual Machine Monitors

Dr. Marc E. Fiuczynski Research Scholar Princeton University

Introduction

- □ Have been around since 1960's on mainframes
 - used for multitasking
 - Good example VM/370
- □ Have resurfaced on commodity platforms
 - Server Consolidation
 - Web Hosting centers
 - High-Performance Compute Clusters
 - Managed desktop / thin-client
 - Software development / kernel hacking


Why do we care?

- □ Manageability
 - Ease maintenance, administration, provisioning, etc.
- □ Performance
 - Overhead of virtualization should be small
- □ Isolation
 - Activity of one VM should not impact other active VMs
 - Data of one VM is inaccessible by another
- □ Scalability
 - Minimize cost per VM

Virtual Machine Monitor (VMM)

- □ Resides as a layer below the operating system
- □ Presents a hardware interface to an OS
- Multiplexes resources between several virtual machines (VMs)
- Performance Isolates VMs from each other

VMM Types

guest application	guest application	guest application	
guest operating system			
virtual-machine monitor (VMM)			
host operating system			
host hardware			

Type II VMM

Type I VMM

Virtualization Styles

□ Fully virtual*izing* VMM

□ Para- virtual*izing* VMM

VMM Classification

	Туре І	Туре II	
Fully-virtualized	VMware ESX	VMware Workstation	
Para-virtualized	Xen	User Mode Linux	

VMM Implementation

Should efficiently virtualize the hardware

- Provide illusion of multiple machines
- Retain control of the physical machine

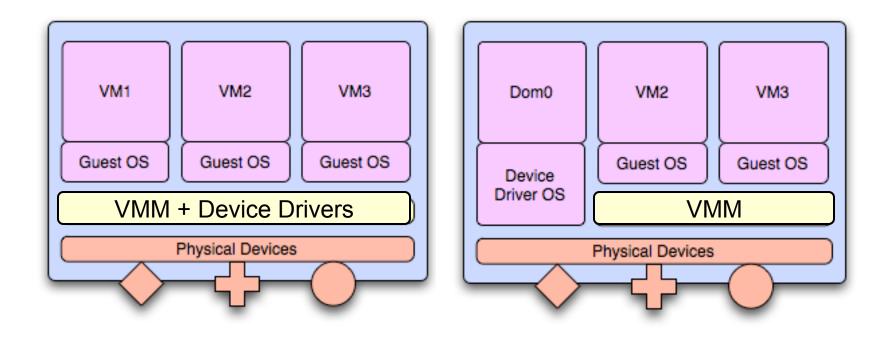
Subsystems

- Processor Virtualization
- Memory Virtualization
- □ I/O virtualization

Processor Virtualization

Popek and Goldberg (1974)

- All instructions that can inspect and modify privileged machine state will trap when executed from any but the most privileged state
- CPU architecture virtualizable if it supports running VCPU state on real CPU, and VMM retains real control of CPU


x86 Processor Virtualization

- □ x86 architecture is not fully virtual*izable*
 - Certain privileged instructions behave differently when run in unprivileged mode
 - Certain unprivileged instructions can access privileged state
- □ Techniques to address inability to virtualize x86
 - Replace non-virtualizable instructions with easily virtualized ones statically (Paravirtualization)
 - Perform Binary Translation (Full Virtualization)

I/O Virtualization

- □ Issue: lots of I/O devices
- Problem: Writing device drivers for all I/O device in the VMM layer is not a feasible option
- Insight: Device driver already written for popular
 Operating Systems
- Solution: Present virtual I/O devices to guest VMs and channel I/O requests to a trusted host VM running popular OS

I/O Virtualization

Memory Virtualization

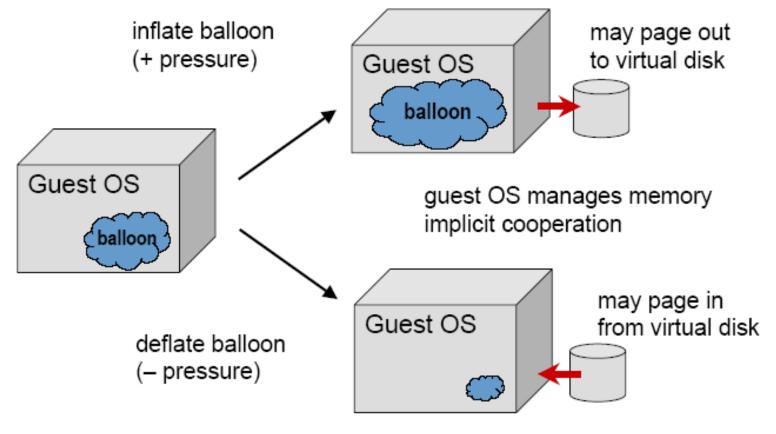
- Traditional way is to have the VMM maintain a shadow of the VM's page table
- The shadow page table controls which pages of machine memory are assigned to a given VM
- When OS updates it's page table, VMM updates the shadow

VMware ESX Server

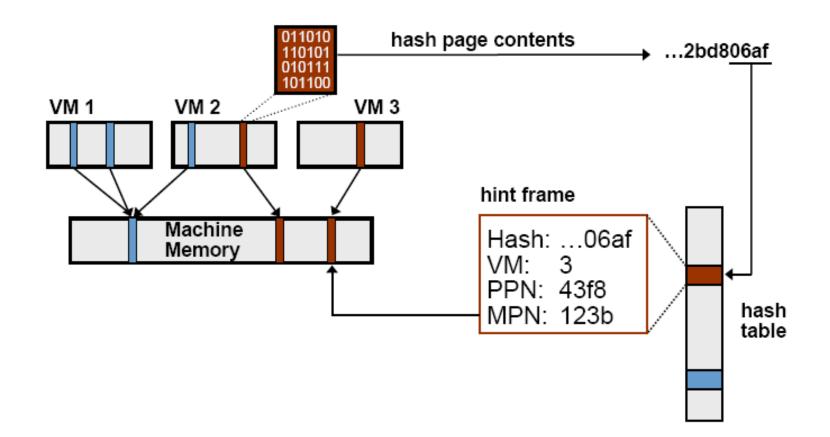
- □ Type I VMM Runs on bare hardware
- Full-virtualized Legacy OS can run unmodified on top of ESX server
- Fully controls hardware resources and provides good performance

ESX Server – CPU Virtualization

- Most user code executes in Direct Execution mode; near native performance
- Uses *runtime* Binary Translation for x86 virtualization
 - Privileged mode code is run under control of a Binary Translator, which emulates problematic instructions
 - Fast compared to other binary translators as source and destination instruction sets are nearly identical


ESX Server – Memory Virtualization

- Maintains shadow page tables with virtual to machine address mappings.
- Shadow page tables are used by the physical processor
- ESX maintains the pmap data structure for each VM with "physical" to machine address mappings
- □ ESX can easily remap a machine page

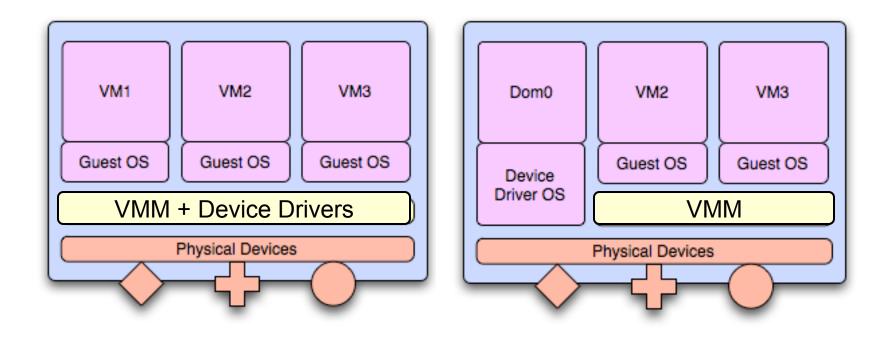

ESX Server – Memory Management

- □ Page reclamation Ballooning technique
 - Reclaims memory from other VMs when memory is overcommitted
- □ Page sharing Content based sharing
 - Eliminates redundancy and saves memory pages when VMs use same operating system and applications

ESX Server- Ballooning

ESX Server – Page Sharing

Real World Page Sharing


		Total	Sa	ved
Workload	Guest Types	MB	MB	%
Corporate IT	10 Windows	2048	673	32.9
Nonprofit Org	9 Linux	1846	345	18.7
VMware	5 Linux	1658	120	7.2

Corporate IT – database, web, development servers (Oracle, Websphere, IIS, Java, etc.) Nonprofit Org – web, mail, anti-virus, other servers (Apache, Majordomo, MailArmor, etc.) VMware – web proxy, mail, remote access (Squid, Postfix, RAV, ssh, etc.)

ESX Server – I/O Virtualization

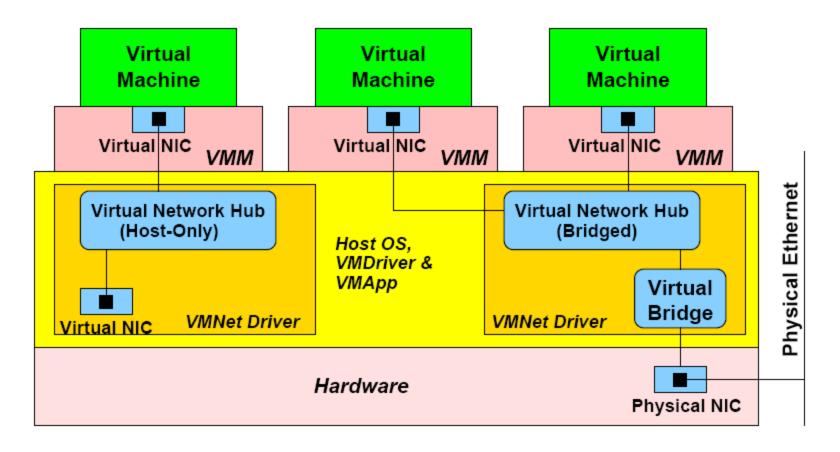
- Has highly optimized storage subsystem for networking and storage devices
 - Directly integrated into the VMM
 - Uses device drivers from the Linux kernel to talk directly to the device
- Low performance devices are channeled to special "host" VM, which runs a full Linux OS

I/O Virtualization

VMware Workstation

- Type II VMM Runs on host operating system
- Full-virtualized Legacy OS can run unmodified on top of VMware Workstation
- □ Appears like a process to the Guest OS
- When run VMApp uses the driver loaded in the host VMDriver to load the VMM.
 - Host world v/s VMM world

Workstation - Virtualization


CPU Virtualization and Memory Virtualization

- Uses Similar Techniques as the VMware ESX server
- □ I/O Virtualization
 - Workstation relies on the Host OS for satisfying I/O requests
 - I/O incurs huge overhead as it has to switch to the Host OS on every IN/OUT instruction.
 Fiud Yinski - cs318

Workstation – I/O Virtualization

- VMM must be able to intercept all I/O operations issued by the Guest OS
- □ These are trapped by the VMM and emulated either in VMM or VMApp.
- Any access that interact with physical hardware have to be handled by VMApp
- I/O intensive workload performs poorly due to extra host switches between the Host and the VMM worlds

Workstation – Virtualize NIC

Xen

- □ Type I VMM
- □ Para-virtualized
- □ Open-source
- Designed to run about 100 virtual machines on a single machine

Xen – CPU Virtualization

- Privileged instructions are para-virtualized by requiring them to be validated and executed with Xen
- Processor Rings
 - Guest applications run in Ring 3
 - Guest OS runs in Ring 1
 - Xen runs in Ring 0

Xen – Memory Virtualization(1)

- Initial memory allocation is specified and memory is statically partitioned
- A maximum allowable reservation is also specified.
- Balloon driver technique similar to ESX server used to reclaim pages

Xen – Memory Virtualization(2)

- Guest OS is responsible for allocating and managing hardware page table
- Xen involvement is limited to ensure safety and isolation
- Xen exists in the top 64 MB section at the top of every address space to avoid TLB flushes when entering and leaving the VMM

Xen – I/O Virtualization

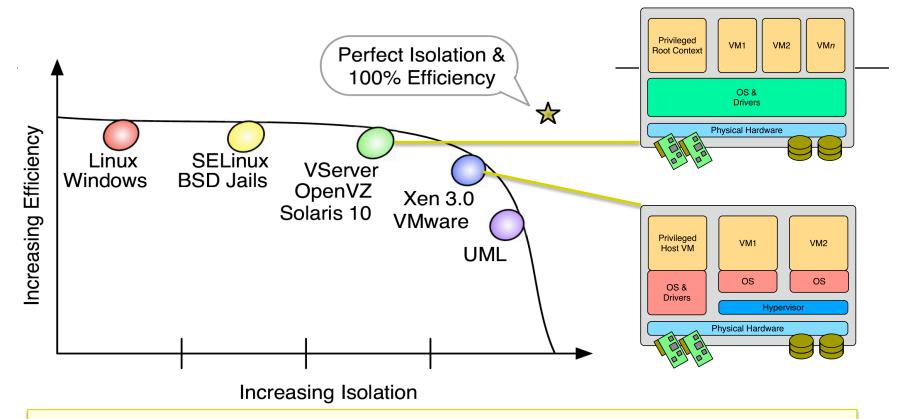
- Xen exposes a set of clean and simple device abstractions
- I/O data is transferred to and from each domain via Xen, using shared memory, asynchronous buffer descriptor rings
- Xen supports lightweight event delivery mechanism used for sending asynchronous notifications to domains

VMMs the only way to Virtualize?

□ Alternative: Container-based OS (COS)

Eg., Solaris 10, Linux-Vserver, OpenVZ

Features	VMM	COS
Multiple kernels		×
Administrative power (root)		
Manageability		
Scalability		
Isolation		
Efficiency 12/15/09 Fluczynski cs3/8		

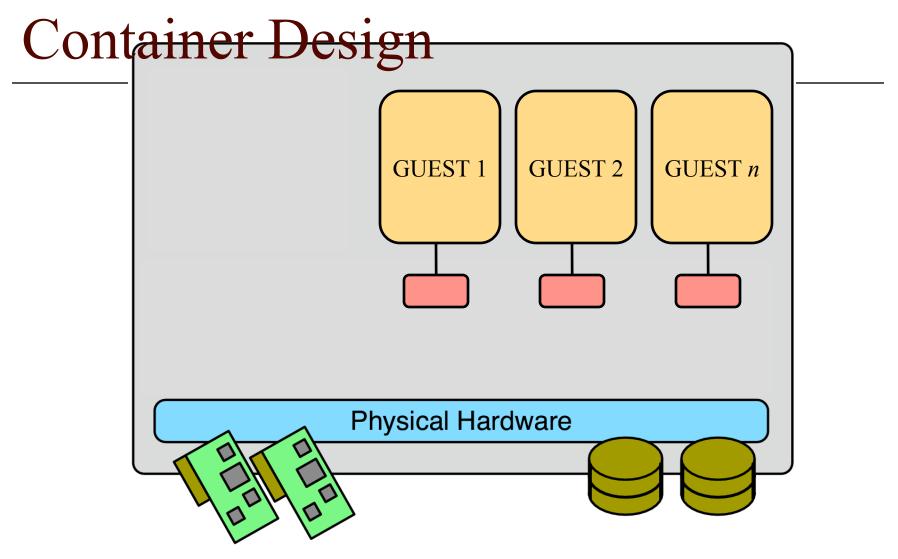

- □ Typical Node (2.4GHz, 1GB, 100GB disk)
- \square ~250-300 configured VM file systems on disk
- $\square \quad 40-90 \text{ resident VMs with} \ge 1 \text{ process}$
- □ 5-20 active VMs using CPU

12/15/09

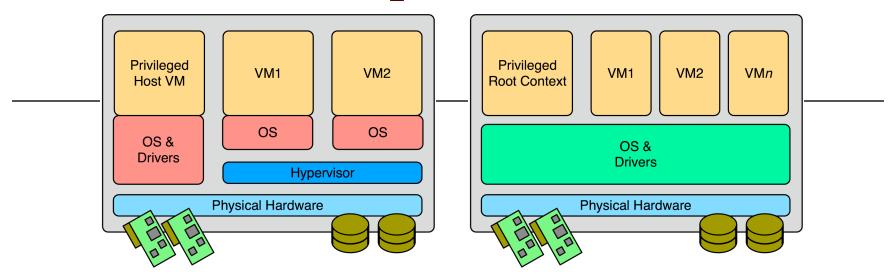
Container vs. Hypervisor

Virtualization.

What is the Trade-Off?

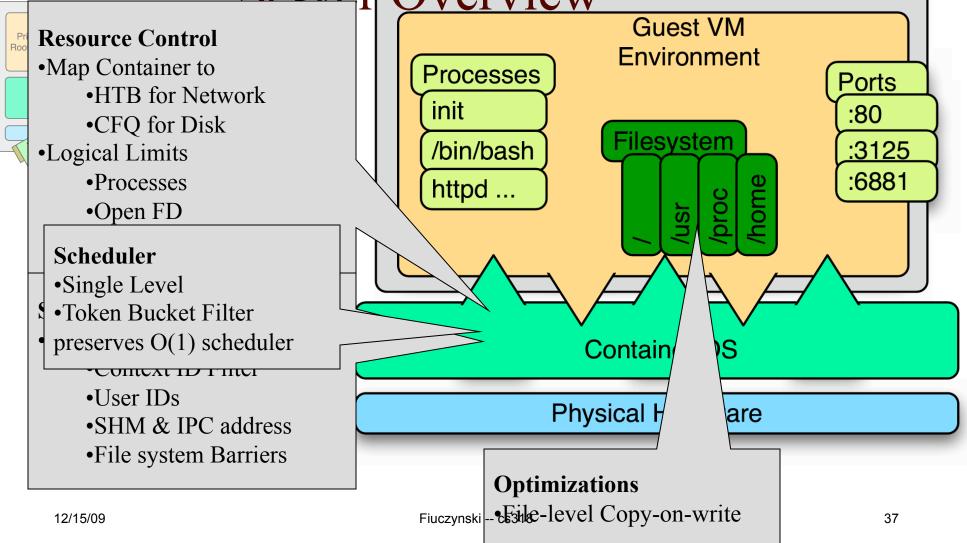


•Stephen Soltesz, Herbert Pötzl, Marc Fiuczynski, Andy Bavier, Larry Peterson. Container-based operating system virtualization: A scalable, high-performance alternative to hypervisors. EuroSys 2007


•Herbert Pötzl and Marc Fiuczynski

Linux-VServer: Resource-Efficient OS-level Virtualization, Ottawa Linux Symposium 2007 ^{12/15/09}

34


reature comparison

•

	Hypervisor	Container
Multiple Kernels		X
Load Arbitrary Modules		X
Local Administration (root)		🗸 All
Live Migration	1	🗸 OpenVZ
Cross Version Migration	X	🖌 Zap

Linux_UServer Overview

COS vs. VMM Comparison Summary

- COS=Linux-Vserver VMM=Xen
- Performance
 - COS 1.25x 2x more efficient than VMM
- □ Scalability
 - COS scales ~10x better
- □ Isolation
 - COS almost as good as VMM

Usage Scenarios

- Efficiency -> Performance IT Data Centers, Grid, HPC Clusters 1-5 Gbps per node from disk to networl **Telco** Deployments Efficiency -> TROP ad Aaking anti-virus 2007 Young Innovato software obsolete Laptops 「R10: HashCache CPE Network Gateways Efficiency -> Scalability →♥ DreamHost Web Hosting (Virtual Private Servers)
 - PlanetLab, VINI Network Research

THANK YOU !