COS 318: Operating Systems

Snapshot and NFS

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Topics

Revisit Transactions and Logging
NetApp File System
NFS

Transactions

Bundle many operations into a transaction
e One of the first transaction systems is Sabre American Airline
reservation system, made by IBM
Primitives
e BeginTransaction
« Mark the beginning of the transaction

e Commit (End transaction)
 When transaction is done

e Rollback (Abort transaction)
« Undo all the actions since “Begin transaction.”
Rules
e Transactions can run concurrently
e Rollback can execute anytime
e Sophisticated transaction systems allow nested transactions

Implementation

BeginTransaction
e Start using a “write-ahead” log on disk
e Log all updates

Commit
e \Write “commit” at the end of the log
e Then “write-behind” to disk by writing updates to disk
e Clear the log

Rollback
e Clear the log

Crash recovery
e If there is no “commit” in the log, do nothing
e If there is “commit,” replay the log and clear the log

Assumptions
e \Writing to disk is correct (recall the error detection and correction)
e Disk is in a good state before we start

An Example: Atomic Money Transfer

Move $100 from account S to C (1 thread):
BeginTransaction

S =S - $100;

C =C + $100;

Commit
Steps:
1: Write new value of S to log
2: Write new value of C to log Q

3: Write commit
4: Write S to disk

5: Write C to disk
6: Clear the log —

Possible crashes

o After 1

o After 2

e After 3 before 4 and 5

Questions
e Can we swap 3 with 4?

@ e Can we swap 4 and 5?

Revisit The Implementation

BeginTransaction
e Start using a “write-ahead” log on disk
e Log all updates

Commit
e \Write “commit” at the end of the log
e Then “write-behind” to disk by writing updates to disk
e Clear the log

Rollback
e Clear the log

Crash recovery
e If there is no “commit” in the log, do nothing
e If there is “commit,” replay the log and clear the log

Questions
e What if there is a crash during the recovery?

Use Transactions in File Systems

Make a file operation a transaction
e Create afile

e Move a file

e Write a chunk of data

o

o

Would this eliminate any need to run fsck after a crash?

Make arbitrary number of file operations a transaction

e Just keep logging but make sure that things are idempotent:
making a very long transaction

e Recovery by replaying the log and correct the file system
e This is called journaling file system

e Almost all new file systems are journaling (Windows NTFS,
Veritas file system, file systems for Linux)

Issue with Logging: Performance

For every disk write, we now have two disk writes (on
different parts of the disk)?

e It is not so bad because logging is sequential and write-behind
can be done asynchronously.

Performance tricks

e Changes made in memory and then logged to disk
e Logging are sequentially done a different disk.

e Merge multiple writes to the log with one write

e Use NVRAM (Non-Volatile RAM) to keep the log

Log Management

How big is the log? Same size as the file system?

Observation
e Log what’s needed for crash recovery
Management method

e Checkpoint operation: flush the buffer cache to disk
e After a checkpoint, we can truncate log and start again
e Log needs to be big enough to hold changes in memory

Some file systems log only metadata (file descriptors
and directories)
e \Would this be a problem?

What to Log?

Physical blocks (directory blocks and inode blocks)
e Easy to implement but takes more space
e Which block image”?
» Before operation: Easy to go backward during recovery
 After operation: Easy to go forward during recovery.
« Both: Can go either way.

Logical operations
e Example: Add name “foo” to directory #41

e More compact
e But more work at recovery time

10

Log-structured File System (LFS)
®
Structure the entire file system as a log with segments

A segment has i-nodes, indirect blocks, and data blocks
All writes are sequential (no seeks)
There will be holes when deleting files

Questions
e \What about read performance?
e How would you clean (garbage collection)?

11

Case: NetApp’'s NFS File Server

WAFL: Write Anywhere File Layout
e The basic NetApp's file system

Design goals

e Fast services (fast means more operations/sec and higher
bandwidth)

e Support large file systems and allow growing smoothly
e High-performance software RAID
e Restart quickly after a crash

Special features
e Introduce snapshots
e Use NVRAM to reduce latency and maintain consistency

12

Snapshots

A snapshot is a read-only copy of the file system
e Introduced in 1993

e It has become a standard feature of today’s file server
Use snapshots

e System administrator configures the number and frequency of snapshots
e An initial system can keep up to 20 snapshots
e Use snapshots to recover individual files

An example

arizonas cd .snapshot
arizona$ 1s

hourly.0 hourly.Z2 hourly.4 nightly.0 nightly.Z2 weekly.1l
hourly.l hourly.3 hourly.5 nightly.1l weekly.O

arizona$

How much space does a snapshot consume?

e 10-20% space per week

13

I-node, Indirect and Data Blocks

WAFL uses 4KB blocks

e i-nodes (evolved from UNIX’s)
e Data blocks

File size < 64 bytes
e I-node stores data directly

Data

File size < 64K bytes ~——

e i-node stores 16 pointers to data Data Data

File size < 64M bytes

e I-node stores 16 pointers to
iIndirect blocks

e Each indirect pointer block stores ~————_

1K pOinteI’S to data Data Data Data

14

WAFL Layout

A WAFL file system has

e A root i-node: root of everything
e An i-node file: contains all i-nodes) Metadat
e A block map file: indicates free blocks > in?‘ilaesa a
e An i-node map file: indicates free i-nodes |
Root
I-node
i-node 1 |
Other | ' T
files

Block I-node Other files in the file system
map file map file

15

Why Keeping Metadata in Files

Allow meta-data blocks to be written anywhere on disk
e This is the origin of “Write Anywhere File Layout”
e Any performance advantage?

Easy to increase the size of the file system dynamically
e Add a disk can lead to adding i-nodes
e Integrate volume manager with WAFL

Enable copy-on-write to create snapshots
e Copy-on-write new data and metadata on new disk locations
e Fixed metadata locations are cumbersome

16

Snhapshot Implementation

WAFL file system is a tree of
blocks

Snapshot step 1

e Replicate the root i-node Root Root

e New root i-node is the active file
system

e OlId root i-node is the snapshot

Snapshot step 2...n

e Copy-on-write blocks to the root 1 2 1’

e Active root i-node points to the new
blocks

e \Writes to the new block

e Future writes into the new blocks will ,

not trigger copy-on-write AlIB|IC||ID|F C

An “add-on” snapshot mechanism ﬁ ﬁ
for a traditional file system?

17

File System Consistency

Create a snapshot
e Create a consistency point or snapshot every 10 seconds
e On a crash, revert the file system to this snapshot
e Not visible by users

Many requests between consistency points
e Consistency point i

Many writes

Consistency point i+1 (advanced atomically)
Many writes

Question
e Any relationships with transactions?

18

Non-Volatile RAM

Non-Volatile RAM

e Flash memory (slower)
e Battery-backed DRAM (fast but battery lasts for only days)

Use an NVRAM to buffer writes
e Buffer all write requests since the last consistency point

e A clean shutdown empties NVRAM, creates one more
snapshot, and turns off NVRAM

e A crash recovery needs to recover data from NVRAM to the
most recent snapshot and turn on the system

Use two logs
e Buffer one while writing another

Issues
e \What is the main disadvantage of NVRAM?

e How large should the NVRAM be?

19

Write Allocation

WAFL can write to any blocks on disk

e File metadata (i-node file, block map file and i-node map file)
IS in the file system

WAFL can write blocks in any order
e Rely on consistency points to enforce file consistency
e NVRAM to buffer writes to implement ordering

WAFL can allocate disk space for many NFS operations
at once in a single write episode

e Reduce the number of disk I/Os

e Allocate space that is low latency

Issue

e \What about read performance?

20

Snapshot Data Structure

O @
WAI-:L l.JSGS S2-bit Time Block map Description
entries in the block entry P
map file T1 |0000000O0 |Block is free
e 32-bit for each 4KB T2 [00000001|Active FSuses it
disk block T3 |00000011|Create snapshot 1
e 32-bit entry = 0: the T4 (00000111 Crgate snapshot 2'
block is free T5 |00000110 |Active FS deletes it
_ 76 |00000100 |Delete snapshot 1
Bit 0 =1: T7 |0000000O0 |Delete snapshot 2
active file system r 44 L
references the block Set for active FS
Bit1=1: — Set for snapshot 1
the most recent snapshot

— Set for snapshot 2
references the block

— Set for snapshot 3

21

Snapshot Creation

Problem

e Many NFS requests may arrive while creating a snapshot
e File cache may need replacements

e Undesirable to suspend the NFS request stream

WAFL solution

e Before a creation, mark dirty cache data “in-snapshot” and
suspend NFS request stream

e Defer all modifications to “in-snapshot” data
e Modify cache data not marked “in-snapshot”
e Do not flush cache data not marked “in-snapshot”

22

Algorithm

Steps
e Allocate disk space for “in-snapshot” cached i-nodes

« Copy these i-nodes to disk buffer
« Clear “in-snapshot” bit of all cached i-nodes

e Update the block-map file
« For each entry, copy the bit for active FS to the new snapshot

e Flush
« Write all “in-snapshot” disk buffers to their new disk locations
« Restart NFS request stream

e Duplicate the root i-node

Performance

e Typically it takes less than a second
e \What if root i-node goes to disk before flushed blocks?

23

Snapshot Deletion

Delete a snapshot’'s root i-node

Clear bits in block-map file

e For each entry in block-map file, clear the bit representing the
shapshot

24

Performance
0O
¢ SPEC SFS benchmark shows 8X faster than others

S0 e FAServer X Cluster
T 45+ Auspex NS 6000
ﬁ = Sun SPARCcluster 1
E AT | == Sun SPARCenter 2000
® 18 — Sun SPARCserver 1000
E
=] :w Y
n
e 25
a
w20 =
o
(™
m 1 5 L]
on
2 10+
s
o 5

0 500 1000 1500 2000 2500 J000 as00

NFS operations/second

25

Network File System

Sun introduced NFS v2 in early 80s
NFS server exports directories to clients

Clients mount NFS server’s exported directories
(auto-mount is possible)

Multiple clients share a NFS server

|
NFS server ‘ \)\\\\\\\‘l‘l‘l\\;\l\\ ; Clients

L=

26

NFS Protocol (v3)

NULL: Do nothing

GETATTR: Get file attributes

SETATTR: Set file attributes

LOOKUP: Lookup filename

ACCESS: Check Access Permission
READLINK: Read from symbolic link
READ: Read From file

WRITE: Write to file

CREATE: Create a file

MKDIR: Create a directory

SYMLINK: Create a symbolic link
MKNOD: Create a special device
REMOVE: Remove a File

RMDIR: Remove a Directory

RENAME: Rename a File or Directory
LINK: Create Link to an object

READDIR: Read From Directory
READDIRPLUS: Extended read from directory
FSSTAT: Get dynamic file system information
FSINFO: Get static file system Information
PATHCONF: Retrieve POSIX information

COMMIT: Commit cached data on a server to
stable storage 57

NFS Protocol

No open and close

Use a global handle in the protocol
e Read some bytes
e \Write some bytes

Questions
e \What is stateless?
o Is NFS stateless?
e \What is the tradeoffs of stateless vs. stateful?

28

NFS Implementation

NES Server Client kernel

29

NFS Client Caching Issues

Client caching
e Read-only file and directory data (expire in 60 seconds)
e Data written by the client machine (write back in 30 seconds)

Consistency issues
e Multiple client machines can perform writes to their caches

e Some cache file data only and disable client caching of a file if
it is opened by multiple clients

e Some implement a network lock manager

30

NFS Protocol Development

Version 2 issues
e 18 operations
e Size: limit to 4GB file size

e Write performance: server writes data synchronously
e Several other issues

Version 3 changes (most products still use this one)
22 operations

Size: increase to 64 bit

Write performance: WRITE and COMMIT

Fixed several other issues

Still stateless

Version 4 changes
e 42 operations
e Solve the consistency issues
o
o

Security issues
Stateful

31

Summary

|
Consistent updates

e [ransactions use a write-ahead log and write-behind to update
e Journaling file systems use transactions

WAFL

e \Write anywhere layout
e Snapshots have become a standard feature

NFS

e Stateless network file system protocol
e Client and server caching

32

™
™

