COS 318: Operating Systems

Mutex Implementation

(http://www.cs.princeton.edu/courses/cos318/)

The Big Picture
O |
OS codes and concurrent applications
High-Level -
Atomic AP Mutex Semaphores Monitors Send/Recv
Low-Level Interrupt Other atomic
L Te - N

Atomic Ops oad/store disable/enable estéSet instructions

Interrupts Multiprocessors CPU

(I/O, timer) P scheduling

:

Today’s Topics
o0
Disabling Interrupts for mutual exclusion
Hardware support for mutual exclusion
Competitive spinning
2
Revisit Mutual Exclusion (Mutex)
O

Critical section
Acquire (lock) ;
if (noMilk)

buy milk;
Release (lock) ;

Critical section

Conditions of a good solution
e Only one process/thread inside a critical section
e No assumption about CPU speeds

e A process/thread inside a critical section should not be blocked by any
processes/threads outside the critical section

e No one waits forever

e Works for multiprocessors
e Same code for all processes/threads

Mutual Exclusion via Disabling Interrupts

Use interrupts
e Implement preemptive CPU scheduling

e Provide mutual exclusion by preventing context
switch between acquire and release

e Two types of events can cause switches:
« Internal events to relinquish the CPU
« External events to reschedule the CPU

Disable interrupts to prevent external
events

e Introduce uninterruptible code regions

e Think sequentially most of the time

e Delay handling of external events Disablelnt()

Uninterruptible :
region |~ Enablelnt()

Another Try
Use a lock variable
Acquire (lock) {

disable interrupts;
while (lock.value !'= FREE)

Release (lock) {
disable interrupts;
lock.value = FREE;

; enable interrupts;
lock.value = BUSY; }

enable interrupts;

}

Issues with this approach?
Why disable interrupts at all?

ok

A Simple Way to Use Disabling Interrupts
o0
Acquire () {
disable interrupts; Acquire()
}
critical section?
Release () {
enable interrupts; LD
}
Issues with this approach?
6
Another Try
U

Use a lock variable, and impose mutual exclusion via
interrupts only on testing and setting that variable

Acquire (lock) { Release (lock) {
disable interrupts; disable interrupts;
while (lock.value != FREE) { lock.value = FREE;

enable interrupts; enable interrupts;
disable interrupts; }

}
lock.value = BUSY;
enable interrupts;

}

Does this fix the “wait forever” problem?

Once more, with queuing ...

Acquire(lock) {
disable interrupts;
while (lock.value == BUSY)

Release (lock) {
disable interrupts;

{ dequeue a thread;
enqueue me for lock; make it ready;
Yield(); }

} lock.value = FREE;

lock.value = BUSY;
enable interrupts; }

enable interrupts;

What'’s going on here?

When should acquirer re-enable interrupts?
e Just before enqueue?

e Just after enqueue and before Yield()?

if (anyone in queue) {

A Simple Solution with Test&Set

Define TAS(lock)

e If successfully set, return 1;
e Otherwise, return 0;

Any issues with the following solution?

Acquire (lock) {
while (TAS(lock.value) == 1)

7

}

Release (lock) {
lock.value = 0;

}

ok

Atomic Read-Modify-Write Instructions

Test&Set

e Read location, set its value to 1, return value read
Exchange (xchg, x86 architecture)

e Swap register and memory

e Atomic (even without LOCK)
Fetch&Add or Fetch&Op

systems
Load linked and conditional store

e Read value in one instruction (load linked)
e Do some operations;

e When store, check if value has been modified since load
linked. If not, ok; otherwise, jump back to start

e Atomic instructions for large shared memory multiprocessor

What About This Solution?

Release (lock) {
while (TAS(lock.guard)
if (anyone in queue) {
dequeue a thread;
make it ready;

Acquire (lock) {
while (TAS(lock.guard) == 1)

if (lock.value) {
enqueue the thread;
block and lock.guard = 0;

} else { } else
lock.value = 1; lock.value = 0;
lock.guard = 0; lock.guard = 0;

} }

How long does the “busy wait” take?

==1)

Example: Protect a Shared Variable
o0
Acquire (lock)
count++;
Release (lock)
Acquire(mutex) system call
e Pushing parameter, sys call # onto stack
e Generating trap/interrupt to enter kernel
e Jump to appropriate function in kernel
e Verify process passed in valid pointer to mutex
e Minimal spinning
e Block and unblock process if needed
e Get the lock
Executing “count++;”
Release(mutex) system call
@w 13
Block and Unblock System Calls
O |
Block(lock) Unblock(lock)
e Spin on lock.guard e Spin on lock.guard
e Save the context to TCB e Dequeue a TCB from lock.q
e Enqueue TCB to lock.q e Put TCB in ready queue
e Clear lock.guard e Clear lock.guard
e Call scheduler

Available Primitives and Operations
o0
Test-and-set
e Works at either user or kernel level
System calls for block/unblock
e Block takes some token and goes to sleep
e Unblock “wakes up” a waiter on token
14
Always Block
o
Acquire (lock) { Release (lock) {
while (TAS(lock.value) == 1) lock.value = 0;
Block(lock); Unblock(lock) ;
} }

What are the issues with this approach?

An algorithm is c-competitive if
for every input sequence o

Ca(0) < & X Cop(0) + K

e Cis a constant
e C,(0) is the cost incurred by algorithm A in processing o

e C,,(0) is the cost incurred by the optimal algorithm in
processing

We want have c to be as small as possible
Deterministic and randomized competitive algorithms

I
e

Always Spin
o0
Acquire (lock) { Release (lock) {
while (TAS (lock.value)==1) lock.value = 0;
while (lock.value) }
}
Two spinning loops in Acquire () ?
CPU CPU CPU CPU
L1 | | L1s L1$ | | L18
> L2$ L2$
TRAS
L2s —_—
Memory
Multicore
SMP
17
Competitive Algorithms
o0

Optimal Algorithms
o0
What is the optimal solution to spin vs. block?
e Know the future
e Exactly when to spin and when to block
But, we don’t know the future
e There is no online optimal algorithm
Offline optimal algorithm
e Afterwards, derive exactly when to block or spin (“what if”)
e Useful to compare against online algorithms
@, 18
Constant Competitive Algorithms
O

Acquire (lock, N) {
int i;

while (!TAS(lock.value)) {
i=N;

while ('lock.value && i)
i--;

if ('i)
Block (lock) ;

}
}

Spin up to N times if the lock is held by another thread
If the lock is still held after spinning N times, block

If spinning N times is equal to the context-switch time, what is the
competitive factor of the algorithm?

Approximate Optimal Online Algorithms
O |
Main idea
e Use past to predict future
Approach
o Random walk
» Decrement N by a unit if the last Acquire() blocked
« Increment N by a unit if the last Acquire() didn’t block

e Recompute N each time for each Acquire() based on some
lock-waiting distribution for each lock

Theoretical results
E Ca(o (P)) = (el(e-1)) x E C,,(o(P))

The competitive factor is about 1.58.

21
The Big Picture
O |
OS codes and concurrent applications
High-Level -
Atomic AP Mutex Semaphores Monitors Send/Recv
Low-Level Interrupt Other atomic
L Te - N
Atomic Ops oad/store disable/enable estéSet instructions
Interrupts Multiprocessors CPU
(I/O, timer) P scheduling
m@w 23
wu-l

Empirical Results
: O |
Block Spin Fixed C/2\ Fixed C Opt Online 3-samples /R-walk
Nub (2h) 1.943 2.962 1.503 1.559 1.078 1.225 1.093
Taos (24h) 1.715 3.366 (‘ 1.492 ‘\ 1767 1.141 1212 [1213 |
Taos (M2+) 1.776 3.535 1.483 1.750 1.106 1.177 1.160
Taos (Regsim) 1.578 3.293 ‘ 1.499 1.748 1.161 1.260 ‘ 1.268 ‘
Ivy (100m) 5.171 2.298 \ 1.341 } 1.438 1.133 1.212 1.167
Ivy (18h) 7.243 1562 | 1274 | 1.233 1.109 1.233 ~‘ 1.141 ‘/
Galaxy 2.897 2.667 1.419 1.740 1.237 1.390 1.693
Hanoi 2,997 2.976 1.418 1.726 1.200 1.366 1.642
Regsim 4.675 1.302 1.423 1.374 1.183 1.393 1.366
Table 1: Synchronization costs for e&}r program relative to the optimal off-line algor
Max Elapsed time Improvement
spins (seconds)
Always-block N/A 10520.5 0.0%
Always-spin N/A 8256.3 21.5%
Fixebspin 100 sue0 A. Karlin, K. Li, M. Manasse, and S. Owicki,
Opt-known 1008 7881.4 25.1% “Empirical Studies of Competitive Spinning
Opt-approx 1008 8171.2 22.3% for a Shared-Memory Multiprocessor,”
3-samples 1008 8011.6 23.9% Proceedings of the 13" ACM Symposium
Random-walk 1008 7929.7 [247% | on Operating Systems Principle, 1991.
‘Table 3: Elapsed times of Regsim using different spin-
ning strategies.
22
Summary
o
Disabling interrupts for mutex
e There are many issues
e \When made to work, works for only uniprocessors
Atomic instruction support for mutex
e Atomic load and stores are not good enough
e Test&set and other instructions are the way to go
Competitive spinning
e Spin at the user level most of the time
e Make no system calls in the absence of contention
e Have more threads than processors
) = 24

