Topics

o060
+ Storage hierarchy
COS 318: Operating Systems + File system abstraction
o0 + File system operations
File Systems + File system protection

Evolved Data Center Storage Hierarchy
N
L

- 2 oY
s Remote Network Remote
% Storage mirror E‘ﬁ‘ Attached tw/ sntap?r;otts mirror
o protect data
Clients Server Clients Storage p
(NAS)

3

e




Modern Data Center Storage Hierarchy
o000
gj\ =
2 l
: Network Remote
=] Attached w/ snapshots mirror
= Clients Storage to protect data
(NAS)
Onsite [, Remote
Bgcszlqup r:ﬁ Backup
“Deduplication” w
Capacity and —
bandwidth ==
optimization
5
Recall Some High-level Abstractions
00

+ Processes are an abstraction for processors
+ Virtual memory is an abstraction for memory
+ File systems are an abstraction for disk (disk blocks)

Why Files?
o060
+ Can’t we just use main memory?

¢ Can’'t we use a mechanism like swapping to disk?

+ Need to store large amounts of information
¢ Need the information to survive process termination
+ Need the information to be share-able by processes

File System Layers and Abstractions
N

+ Network file system maps a
network file system protocol to

local file systems
: NFS, ClFS‘ DAFS, - _
¢ Local file system implements a

file system on blocks in volumes Local File System
e Local disks or network of disks
+ Volume manager maps logical Volume Manager
volume to physical disks
e Provide logical unit Disk Management
e RAID and reconstruction
+ Disk management manages Ei Ei Ei Ej

physical disks
e Sometimes part of volume manager
e Drivers, scheduling, etc

)




Volume Manager

What and why?
e Group multiple disk partitions into a logical disk volume
* No need to deal with physical disk, sector numbers
* To read a block: read( vol#, block#, buf, n );
e Volume can include RAID, tolerating disk failures
» No need to know about parity disk in RAID-5, for example
» No need to know about reconstruction
e Volume can provide error detections at disk block level
* Some products use a checksum block for 8 blocks of data
e Volume can grow or shrink without affecting existing data
e Volume can have remote volumes for disaster recovery
e Remote mirrors can be split or merged for backups
How to implement?
e OS kernel: Veritas (for SUN and NT), Linux
e Disk subsystem: EMC, Hitachi, IBM

How many lines of code are there for a volume manager?

File Structure Alternatives

Byte sequence

e Read or write a number of bytes
e Unstructured or linear

e Unix, Windows

Record sequence

e Fixed or variable length

e Read or write a number of records
e Not used: punch card days

Tree
e Records with keys

e Read, insert, delete a record
(typically using B-tree, sorted on key)

e Used in mainframes for commercial

data processing
@“
T )

Block Storage vs. Files
o0
Disk abstraction File abstraction
Block oriented Byte oriented
Block numbers Named files
No protection among users of Users protected from each
the system other
Data might be corrupted if Robust to machine failures
machine crashes
10
File Types
o
ASCII
Binary data
e Record
e Tree

e An Unix executable file
» header: magic number, sizes, entry point, flags
* text
* data
* relocation bits
* symbol table

Devices
Everything else in the system




File Operations

Operations for “sequence of bytes” files
e Create: create a mapping from a name to bytes
o Delete: delete the mapping
e Open: authentication, bring key attributes, disk info into RAM
e Close: free up table space, force last block write
e Seek: jump to a particular location in a file
e Read: read some bytes from a file
o Write: write some bytes to a file
e Get attributes, Set attributes
e A few more on directories: talk about this later
Implementation goal

e Operations should have as few disk accesses as possible and
have minimal space overhead

VM Page Table vs. File System Metadata
o0

File metadata

Manage the mappings of an Manage the mappings of files

address space Map byte offset to disk block

Map virtual page # to physical address

page # Check access permission and

Check access permission and illegal addressing

illegal addressing All implement in software and

TLB does all in one cycle may cause disk accesses

Page table

Access Patterns

Sequential (the common pattern)
e File data processed sequentially
e Examples
« Editor writes out a new file
« Compiler reads a file

Random access
e Address a block in file directly without passing through predecessors
e Examples:
+ Data set for demand paging
* Read a message in an inbox file
« Databases

Keyed access
e Search for a record with particular values
e Usually not provided by today’s file systems
e Examples
« Database search and indexing

File System vs. Virtual Memory

Similarity

e Location transparency

e Oblivious to size

e Protection

File system is easier than VM

e CPU time to do file system mappings is not a big deal
e Files are dense and mostly sequential

e Page tables deal with sparse address spaces and random
accesses

File system is harder than VM

e Each layer of translation causes potential disk accesses
o Memory space for caching is never enough

e Range very extreme: many < 10k, some > GB

e Implementation must be very reliable




Protection Policy vs. Mechanism

Policy is about what and mechanism is about how

A protection system is the mechanism to enforce a
security policy
e Roughly the same set of choices, no matter what policy
A security policy delineates what acceptable behavior
and unacceptable behavior
e Example security policies:
» Each user can only allocate 40MB of disk
» No one but root can write to the password file
* You cannot read my mail

Protection Mechanisms

Authentication
o Make sure system knows whom it is talking to
* Unix: password
« Credit card companies: social security # + mom’s name
» Bars: driver’s license
Authorization
e Determine if x is allowed to do y
o Need a simple database
Access enforcement
e Enforce authorization decision
o Must make sure there are no loopholes
e This is difficult

Authentication

Usually done with passwords

e This is usually a relatively weak form of authentication, since
it's something that people have to remember

e Empirically is typically based on girlfriend/boyfriend/partner
name
Passwords should not be stored in a directly-readable
form

e Use some sort of one-way-transformation (a “secure hash”)
and store that

e If you look in /etc/passwords will see a bunch of gibberish
associated with each name. That is the password

Problem: to prevent guessing (“dictionary attacks”)

passwords should be long and obscure

e Unfortunately easily forgotten and usually written down

What are the alternatives?

ok

Protection Domain

A set of (objects, rights) pairs
e Domain may correspond to single user, or more general
e Process runs in a domain at a given instant in time
Once identity known, what is Bob allowed to do?

o More generally: must be able to determine what each
“principal” is allowed to do with what

Can be represented as an “protection matrix” with one
row per domain, one column per resource
What are the pros and cons of this approach?

File A Printer B File C
Domain 1 R w RW
Domain 2 RW w
%@g Domain 3 R RwW 20




Access Control Lists (ACLSs)

By column: For each object, indicate which users are

allowed to perform which operations

e In most general form, each object has a list of
<user,privileged> pairs

Access control lists are simple, and are used in almost

all file systems

e Owner, group, world

Implementation

e Stores ACLs in each file

e Use login authentication to identify

e Kernel implements ACLs

What are the issues?

21

Access Enforcement

Use a trusted party to
e Enforce access controls
e Protect authorization information
Kernel is the trusted party
e This part of the system can do anything it wants
e [f it has a bug, the entire system can be destroyed
e Want it to be as small & simple as possible
Security is only as strong as the weakest link in the
protection system

I
e

23

Capabilities
O |
By rows: For each user, indicate which files may be accessed and
in what ways
e Store a lists of <object, privilege> pairs which each user.
+ Called a Capability List
Capabilities frequently do both naming and protection
e Can only “see” an object if you have a capability for it.
e Default is no access
Implementation
e Capability lists
« Architecture support
+ Stored in the kernel
« Stored in the user space but in encrypted format
e Checking is easy: no enumeration
Issues with capabilities?
22
Some Easy Attacks
O

Abuse of valid privilege

e On Unix, super-user can do anything. Read your mail, send
mail in your name, etc.

e If you delete the code for your COS318 project, your partner is
not happy
Spoiler/Denial of service (DoS)
e Use up all resources and make system crash
e Run shell script to: “while(1) { mkdir foo; cd foo; }"
e Run C program: “while(1) { fork(); malloc(1000)[40] = 1; }"
Listener

e Passively watch network traffic. Will see anyone’s password
as they type it into telnet. Or just watch for file traffic: Will be
transmitted in plaintext.

ﬁ@ 24




No Perfect Protection System

Protection can only increase the effort needed to do
something bad

e |t cannot prevent bad things from happening

Even assuming a technically perfect system, there are
always ways to defeat

e burglary, bribery, blackmail, bludgeoning, etc.

Every system has holes

e |t just depends on what they look like

25

Summary

Storage hierarchy is complex

e Reliability, security, performance and cost

e Many things are hidden, but the world is becoming tapeless
Primary

o Network file system

e Local file system

e Volume manager

Protection

o We basically live with access control list

e More protection is needed in the future

26




