
1

COS 217: Introduction to
Programming Systems

2

Goals for Today’s Class
• Course overview

• Introductions
• Course goals
• Resources
• Grading
• Policies

• Getting started with C
• C programming language overview

3

Introductions

• Jaswinder Pal Singh, Ph.D. (Professor)
• jps@cs.princeton.edu

• Robert Dondero, Ph.D. (Lead Preceptor)
• rdondero@cs.princeton.edu

4

Introductions (cont.)
• Muneeb Ali (Preceptor)

• muneeb@princeton.edu

• Matvey Arye (Preceptor)
• arye@princeton.edu

• Jialu Huang (Preceptor)
• jialuh@princeton.edu

• Jack Tzu-Han Hung (Preceptor)
• thhung@princeton.edu

• Hanjun Kim (Preceptor)
• hanjunk@princeton.edu

• Indraneel Mukherjee (Preceptor)
• imukherj@princeton.edu

• Richard Wang (Preceptor)
• rwthree@princeton.edu

5

Course Goal 1: “Programming in the Large”

• Goal 1: “Programming in the large”
• Help you learn how to write large

computer programs
• Abstraction; Interfaces and implementations

• Specifically, help you learn how to:
• Write modular code

• Hide information
• Manage resources
• Handle errors

• Write portable code
• Test and debug your code
• Improve your code’s performance (and when to do so)
• Use tools to support those activities

6

Course Goal 2: “Under the Hood”
• Goal 2: “Look under the hood”

• Help you learn what happens
“under the hood” of computer systems

• Specifically, two downward tours

• Goal 2 supports Goal 1
• Reveals many examples of effective abstractions

C Language

Assembly Language

Machine Language

Application Program

Operating System

Hardware

language
levels
tour

service
levels
tour

7

Course Goals: Why C?
• Q: Why C instead of Java?

• A: C supports Goal 1 better
• C is a lower-level language

• C provides more opportunities to create abstractions
• C has some flaws

• C’s flaws motivate discussions of software engineering
principles

• A: C supports Goal 2 better
• C facilitates language levels tour

• C is closely related to assembly language
• C facilitates service levels tour

• Linux is written in C

8

Course Goals: Why Linux?
• Q: Why Linux instead of Microsoft Windows?

• A: Linux is good for education and research
• Linux is open-source and well-specified

• A: Linux is good for programming
• Linux is a variant of Unix
• Unix has GNU, a rich open-source programming

environment

9

Course Goals: Summary
• Help you to become a...

Power Programmer!!!

10

Resources: Lectures and Precepts

• Lectures
• Describe concepts at a high level
• Slides available online at course Web site

• Precepts
• Support lectures by describing concepts at a lower level
• Support your work on assignments

11

Resources: Website and Listserv

• Website
• Access from http://www.cs.princeton.edu

• Academics → Course Schedule → COS 217

• Listserv
• cos217@lists.cs.princeton.edu
• Subscription is required
• Instructions provided in first precept

12

Resources: Books
• Required book

• C Programming: A Modern Approach (Second Edition), King,
2008.
• Covers the C programming language and standard libraries
• First edition is not quite so good, but is sufficient

• Highly recommended books
• The Practice of Programming, Kernighan and Pike, 1999.

• Covers “programming in the large”
• (Required for COS 333)

• Computer Systems: A Programmer's Perspective, Bryant and
O'Hallaron, 2003.
• Covers “under the hood”
• Some key sections are on electronic reserve

• Programming with GNU Software, Loukides and Oram, 1997.
• Covers tools

• All books are on reserve in Engineering Library

13

Resources: Manuals

• Manuals (for reference only, available online)
• IA32 Intel Architecture Software Developer's Manual, Volumes 1-3
• Tool Interface Standard & Executable and Linking Format
• Using as, the GNU Assembler

• See also
• Linux man command

• man is short for “manual”
• For more help, type man man

14

Resources: Programming Environment

Friend Center 016
or 017 Computer

hats.princeton.edu

SSH

Lab TAs

Linux
GNU

• Option 1

Your
Pgm

fedora
fez

15

Resources: Programming Environment

Your PC/Mac/Linux
Computer

SSH

• Option 2

hats.princeton.edu

Linux
GNU

Your
Pgm

fedora
fez

16

Resources: Programming Environment
• Other options

• Use your own PC/Mac/Linux computer; run GNU tools locally; run
your programs locally

• Use your own PC/Mac/Linux computer; run a non-GNU development
environment locally; run your programs locally

• Etc.

• Notes
• Other options cannot be used for some assignments (esp. timing

studies)
• Instructors cannot promise support of other options
• Strong recommendation: Use Option 1 or 2 for all assignments
• First precept provides setup instructions

17

Grading
• Seven programming assignments (50%)

• Working code
• Clean, readable, maintainable code
• On time (penalties for late submission)
• Final assignment counts double (12.5%)

• Exams (45%)
• Midterm (15%)
• Final (30%)

• Class participation (5%)

• Lecture and precept attendance is mandatory

18

Programming Assignments
• Programming assignments

1. A “de-comment” program
2. A string module
3. A symbol table module
4. IA-32 assembly language programs
5. A buffer overrun attack
6. A heap manager module
7. A Unix shell

• Key part of the course

• Due (typically) Sundays at 9:00PM

• First assignment is available now

• Advice: Start early to allow time for debugging …

19

Why Debugging is Necessary…

20

Policies

Study the course “Policies” web page!!!
• Especially the assignment collaboration policies

• Violation involves trial by Committee on Discipline
• Typical penalty is suspension from University for 1 academic year

• Some highlights:
• Don’t view anyone else’s work during, before, or after the assignment

time period
• Don’t allow anyone to view your work during, before, or after the

assignment time period
• In your assignment “readme” file, acknowledge all resources used

• Ask your preceptor for clarifications if necessary

21

Course Schedule
• Very generally…

Weeks Lectures Precepts
1-2 Intro to C (conceptual) Intro to Linux/GNU

Intro to C (mechanical)
3-6 “Pgmming in the Large” Advanced C

6 Midterm Exam
7 Recess
8-13 “Under the Hood” Assembly Language

Pgmming Assignments
Reading Period

Final Exam

• See course “Schedule” web page for details

22

Any questions before we start?

23

C vs. Java: History

BCPL B C K&R C ANSI C89
ISO C90 ISO/ANSI C99

1960 1970 1972 1978 1989 1999

LISP Smalltalk C++ Java

Not yet popular;
our compiler
supports only
partiallyWe will use

24

C vs. Java: Design Goals
• Java design goals

• Support object-oriented programming
• Allow same program to be executed on multiple operating systems
• Support using computer networks
• Execute code from remote sources securely
• Adopt the good parts of other languages (esp. C and C++)

• Implications for Java
• Good for application-level programming
• High-level

• Virtual machine insulates programmer from underlying assembly
language, machine language, hardware

• Portability over efficiency
• Security over efficiency
• Security over flexibility

25

C vs. Java: Design Goals
• C design goals

• Support structured programming
• Support development of the Unix OS and Unix tools

• As Unix became popular, so did C

• Implications for C
• Good for system-level programming

• But often used for application-level programming – sometimes
inappropriately

• Low-level
• Close to assembly language; close to machine language; close to

hardware
• Efficiency over portability
• Efficiency over security
• Flexibility over security

26

C vs. Java: Design Goals

• Differences in design goals explain many differences
between the languages

• C’s design goal explains many of its eccentricities

• We’ll see examples throughout the course

27

C vs. Java: Overview

• Dennis Ritchie on the nature of C:

• “C has always been a language that never attempts to tie a
programmer down.”

• “C has always appealed to systems programmers who like the terse,
concise manner in which powerful expressions can be coded.”

• “C allowed programmers to (while sacrificing portability) have direct
access to many machine-level features that would otherwise require
the use of assembly language.”

• “C is quirky, flawed, and an enormous success. While accidents of
history surely helped, it evidently satisfied a need for a system
implementation language efficient enough to displace assembly
language, yet sufficiently abstract and fluent to describe algorithms
and interactions in a wide variety of environments.”

28

C vs. Java: Overview (cont.)

• Bad things you can do in C that you can’t do in Java
• Shoot yourself in the foot (safety)
• Shoot others in the foot (security)
• Ignore wounds (error handling)

• Dangerous things you must do in C that you don’t in Java
• Explicitly manage memory via malloc() and free()

• Good things you can do in C, but (more or less) must do in
Java
• Program using the object-oriented style

• Good things you can’t do in C but can do in Java
• Write completely portable code

29

C vs. Java: Details

• Remaining slides provide some details
• Suggestion: Use for future reference

• Slides covered briefly now, as time allows…

30

C vs. Java: Details (cont.)
Java C

Overall
Program
Structure

Hello.java:

public class Hello {
public static void
main(String[] args) {
System.out.println(
"Hello, world");

}
}

hello.c:

#include <stdio.h>

int main(void) {
printf("Hello, world\n");
return 0;

}

Building

% javac Hello.java
% ls
Hello.class
Hello.java
%

% gcc217 hello.c
% ls
a.out
hello.c
%

Running
% java Hello
Hello, world
%

% a.out
Hello, world
%

31

C vs. Java: Details (cont.)

Java C

Character type char // 16-bit unicode char /* 8 bits */

Integral types

byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

(unsigned) char
(unsigned) short
(unsigned) int
(unsigned) long

Floating point
types

float // 32 bits
double // 64 bits

float
double
long double

Logical type boolean
/* no equivalent */
/* use integral type */

Generic
pointer type

// no equivalent void*

Constants final int MAX = 1000;
#define MAX 1000
const int MAX = 1000;
enum {MAX = 1000};

32

C vs. Java: Details (cont.)

Java C

Arrays
int [] a = new int [10];
float [][] b =

new float [5][20];

int a[10];
float b[5][20];

Array bound
checking

// run-time check /* no run-time check */

Pointer type // Object reference is an
// implicit pointer

int *p;

Record type

class Mine {
int x;
float y;

}

struct Mine {
int x;
float y;

}

33

C vs. Java: Details (cont.)

Java C

Strings
String s1 = "Hello";
String s2 = new

String("hello");

char *s1 = "Hello";
char s2[6];
strcpy(s2, "hello");

String
concatenation

s1 + s2
s1 += s2

#include <string.h>
strcat(s1, s2);

Logical ops &&, ||, ! &&, ||, !

Relational ops =, !=, >, <, >=, <= =, !=, >, <, >=, <=

Arithmetic
ops

+, -, *, /, %, unary - +, -, *, /, %, unary -

Bitwise ops >>, <<, >>>, &, |, ^ >>, <<, &, |, ^

Assignment
ops

=, *=, /=, +=, -=, <<=,
>>=, >>>=, =, ^=, |=, %=

=, *=, /=, +=, -=, <<=,
>>=, =, ^=, |=, %=

34

C vs. Java: Details (cont.)

Java C

if stmt

if (i < 0)
statement1;

else
statement2;

if (i < 0)
statement1;

else
statement2;

switch stmt

switch (i) {
case 1:

...
break;

case 2:
...
break;

default:
...

}

switch (i) {
case 1:

...
break;

case 2:
...
break;

default:
...

}

goto stmt // no equivalent goto SomeLabel;

35

C vs. Java: Details (cont.)

Java C

for stmt for (int i=0; i<10; i++)
statement;

int i;
for (i=0; i<10; i++)

statement;

while stmt
while (i < 0)

statement;
while (i < 0)

statement;

do-while stmt

do {
statement;
…

} while (i < 0)

do {
statement;
…

} while (i < 0)

continue stmt continue; continue;

labeled
continue stmt continue SomeLabel; /* no equivalent */

break stmt break; break;

labeled break
stmt break SomeLabel; /* no equivalent */

36

C vs. Java: Details (cont.)

Java C

return stmt return 5;
return;

return 5;
return;

Compound stmt
(alias block)

{
statement1;
statement2;

}

{
statement1;
statement2;

}

Exceptions throw, try-catch-finally /* no equivalent */

Comments
/* comment */
// another kind

/* comment */

Method /
function call

f(x, y, z);
someObject.f(x, y, z);
SomeClass.f(x, y, z);

f(x, y, z);

37

Example C Program
#include <stdio.h>
#include <stdlib.h>

const double KMETERS_PER_MILE = 1.609;

int main(void) {
int miles;
double kmeters;
printf("miles: ");
if (scanf("%d", &miles) != 1) {

fprintf(stderr, "Error: Expect a number.\n");
exit(EXIT_FAILURE);

}
kmeters = miles * KMETERS_PER_MILE;
printf("%d miles is %f kilometers.\n",

miles, kmeters);
return 0;

}

38

Summary

• Course overview
• Goals

• Goal 1: Learn “programming in the large”
• Goal 2: Look “under the hood”
• Goal 2 supports Goal 1
• Use of C and Linux supports both goals

• Learning resources
• Lectures, precepts, programming environment, course listserv,

textbooks
• Course Web site: access via http://www.cs.princeton.edu

39

Summary

• Getting started with C
• C was designed for system programming

• Differences in design goals of Java and C explain many
differences between the languages

• Knowing C design goals explains many of its eccentricities
• Knowing Java gives you a head start at learning C

• C is not object-oriented, but many aspects are similar

40

Getting Started

• Check out course Web site soon
• Study “Policies” page
• First assignment is available

• Establish a reasonable computing environment soon
• Instructions given in first precept

