
6.  Combinational Circuits

George Boole (1815 – 1864) Claude Shannon (1916 – 2001)

2

Digital Circuits

Q.  What is a digital system?
A.  Digital:  signals are 0 or 1.

Q.  Why digital systems?
A.  Accurate, reliable, fast, cheap.

Basic abstractions.
•On, off.
•Wire:  propagates on/off value.
• Switch:  controls propagation of on/off values through wires.

Applications.  Cell phone, iPod, antilock brakes, microprocessors, …

analog:  signals vary continuously

Building Blocks

4

Wires

Wires.
•ON   (1):  connected to power.
•OFF (0):  not connected to power.
• If a wire is connected to a wire that is on, that wire is also on.
• Typical drawing convention:  "flow" from top, left to bottom, right.

0

power
connection

1

1

1

thick wires are “ON”

thin wires are “OFF”



5

Controlled switch. 
• 3 connections:  input, output, control.

Controlled Switch

Controlled switch. 
• 3 connections:  input, output, control.
• control OFF: output is connected to input 

Controlled Switch

control OFF

output OFF

output ON

 

input OFF

input ON

control OFF

7

Controlled switch. 
• 3 connections:  input, output, control.

• control ON: output is disconnected from input

Controlled Switch

output OFF

output OFF

control ON

control ON

8

Controlled switch. 
• 3 connections:  input, output, control.
• control OFF: output is connected to input 
• control ON: output is disconnected from input

Controlled Switch

output OFF

output OFF

control OFF

output OFF

output ON

 

input OFF

input ON

control OFF

idealized model of “pass transistors” found in real integrated circuits

control ON

control ON



9

Relay implementation.  
• 3 connections:  input, output, control.
•Magnetic force pulls on a contact that cuts electrical flow.

Implementing a Controlled Switch First Level of Abstraction

Separates physical world from logical world.
• we assume that switches operate as specified
• that is the only assumption
• physical realization of switch is irrelevant to design

Physical realization dictates performance
• size
• speed
• power

New technology immediately gives new computer.

Better switch?  Better computer.

10

Controlled Switches: A First Level of Abstraction

Some amusing attempts to prove the point:

11

Technology “Information” Switch

pneumatic air pressure

fluid water pressure

relay electric potential

Controlled Switches: A First Level of Abstraction

Real-world examples that prove the point:

12

technology switch

relay

vacuum tube

transistor

“pass transistor” in
integrated circuit

atom-thick transistor



Controlled Switches: A First Level of Abstraction ?

VLSI = Very Large Scale Integration

Technology:
Deposit materials on substrate.

Key property:
Crossing lines are controlled switches.

Key challenge in physical world: 
Fabricating physical circuits
with billions of controlled switches

Key challenge in “abstract” world:
Understanding behavior of circuits
with billions of controlled switches

Bottom line: Circuit = Drawing (!)

13

drawing

drawing

circuit

14

Circuit Anatomy

need more  “levels of abstraction” to understand circuit behavior

15

Second Level of Abstraction: Logic Gates

16

Second Level of Abstraction: Logic Gates



17

Multiway Gates

Multiway gates.
•OR:  1 if any input is 1; 0 otherwise.
•AND:  1 if all inputs are 1; 0 otherwise.
• Generalized:  negate some inputs.

18

Multiway Gates

Multiway gates.
•OR:  1 if any input is 1; 0 otherwise.
•AND:  1 if all inputs are 1; 0 otherwise.
• Generalized:  negate some inputs.

Building blocks (summary)

Wires

Controlled switches

Gates

Generalized multiway gates

19

abstract
simpler version

interpretation:
value is 1 iff variables 

with inverters
are 1 (and others 0)

0 1 1 0 0 1

1

AND gate
implementation

u  v  w  x  y  z

u ’ v w x ’ y ’ zAND

u  v  w  x  y  z

underlying circuit

Boolean Algebra



21

History.
•Developed by Boole to solve mathematical logic problems (1847).
• Shannon master's thesis applied it to digital circuits (1937).

Boolean algebra.
• Boolean variable:  value is 0 or 1.
• Boolean function:  function whose inputs and outputs are 0, 1.

Relationship to circuits.
• Boolean variable:  signal.
• Boolean function:  circuit.

Boolean Algebra

“possibly the most important, and also the most famous,
  master's thesis of the [20th] century”  — Howard Gardner

22

Copyright 2004, Sidney Harris
http://www.sciencecartoonsplus.com

Boole Orders Lunch

23

Truth Table

Truth table.
• Systematic method to describe Boolean function.
•One row for each possible input combination.
• n inputs  !  2n rows.

AND truth table

0 0

0 1

1 0

1 1

0

0

0

1

x y x y

24

Truth Table for Functions of 2 Variables

Truth table.
• 16 Boolean functions of 2 variables.

ZERO

truth table for all Boolean functions of 2 variables

y

0 0

0 1 0

1 0 0

1 1 0

0

0

1

0

0

1

0

0

x

0

0

1

1

AND

0

0

0

1

y

0

1

0

1

XOR

0

1

1

0

OR

0

1

1

1

x

0

NOR

truth table for all Boolean functions of 2 variables

y

0 1

0 1 0

1 0 0

1 1 0

y'

1

0

1

0

x'

1

1

0

0

1

0

1

1

EQ

1

0

0

1

1

1

0

1

NAND

1

1

1

0

ONE

1

1

1

1

x

0

every 4-bit value represents one



25

Truth Table for Functions of 3 Variables

Truth table.
• 16 Boolean functions of 2 variables.
• 256 Boolean functions of 3 variables.
• 2^(2^n) Boolean functions of n variables!

AND

some functions of 3 variables

z

0 0

0 1 0

1 0 0

1 1 0

y

0

x

0

0

0

0

0

0 1

1 0

1 1

01

1

1

1

0

0

0

1

OR

0

1

1

1

1

1

1

1

MAJ

0

0

0

1

0

1

1

1

ODD

0

1

1

0

1

0

0

1

every 4-bit value represents one

every 8-bit value represents one

every 2n-bit value represents one

26

Universality of AND, OR, NOT

Fact.  Any Boolean function can be expressed using AND, OR, NOT.

• { AND, OR, NOT } are universal.

• Ex:  XOR(x, y) = xy' + x'y.

Exercise.  Show {AND, NOT}, {OR, NOT}, {NAND} are universal.
Hint.  DeMorgan's law: (x' y')' = x + y.

x'

Expressing XOR Using AND, OR, NOT

y

0 1

1 1

0 0

1 0

x'y

0

1

0

0

x'y + xy'

0

1

1

0

xy'

0

0

1

0

y'

1

0

1

0

x XOR y

0

1

1

0

x

0

0

1

1

NOT xx'

x AND yx y

x OR y

meaningnotation

x + y

27

Sum-of-Products

Sum-of-products.  Systematic procedure for representing a Boolean 
function using AND, OR, NOT.

• Form AND term for each 1 in Boolean function.
• OR terms together.

x'yz

expressing MAJ using sum-of-products

z xyz' xyzxy'zMAJyx

0

0

0

1

0

1

1

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

x'yz + xy'z + xyz' + xyz

0

0

0

1

0

1

1

1

proves that { AND, OR, NOT }
are universal

28

Translate Boolean Formula to Boolean Circuit

Sum-of-products.  XOR.



29

Translate Boolean Formula to Boolean Circuit

Sum-of-products.  XOR.

AND AND

Key transformation from abstract to real circuit

30

Translate Boolean Formula to Boolean Circuit

Example 1.  XOR.

AND AND

Key transformation from abstract to real circuit

31

Translate Boolean Formula to Boolean Circuit

Example 2.  Majority.

32

Translate Boolean Formula to Boolean Circuit

Example 2.  Majority.



33

Translate Boolean Formula to Boolean Circuit

Example 2.  Majority.

34

Translate Boolean Formula to Boolean Circuit

Example 2.  Majority.

35

size = 7, depth = 2size = 10, depth = 2

Simplification Using Boolean Algebra

Many possible circuits for each Boolean function.
• Sum-of-products not necessarily optimal in:

– number of switches (space)
– depth of circuit (time)

Ex.  MAJ(x, y, z)  =  x'yz + xy'z + xyz' + xyz  =  xy + yz + xz.

36

Combinational Circuit Design: Summary

Problem: Compute the value of a boolean function

Ingredients.
• AND gates.
• OR gates.
• NOT gates.
•Wire.

Instructions.
• Step 1:  represent input and output signals with Boolean variables.
• Step 2:  construct truth table to carry out computation.
• Step 3:  derive (simplified) Boolean expression using sum-of products.
• Step 4:  transform Boolean expression into circuit.

Bottom line (profound idea): 
      It is easy to design a circuit to compute ANY boolean function.

Caveat (stay tuned): Circuit might be huge.



37

Translate Boolean Formula to Boolean Circuit

Example 3. Odd parity
• 1 if odd number of inputs are 1. 
• 0 otherwise.

x'y'z

Expressing ODD using sum-of-products

z xy'z' xyzx'yz'ODDyx

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

x'y'z + x'yz' + xy'z' + xyz

0

1

1

0

1

0

0

1

38

Translate Boolean Formula to Boolean Circuit

Example 3. Odd parity
• 1 if odd number of inputs are 1. 
• 0 otherwise.

39

Translate Boolean Formula to Boolean Circuit

Example 3. Odd parity
• 1 if odd number of inputs are 1. 
• 0 otherwise.

Adder Circuit



41

Let's Make an Adder Circuit

Goal.  x + y = z for 4-bit integers.
•We build 4-bit adder:  9 inputs, 4 outputs.
• Each output bit is a boolean function of the inputs.
• Standard method applies.

Step 1.  Represent input and output in binary.

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

100 0

110 1+

001 1

011

842 7

753 9+

606 6

111 0

0

same idea scales to 64-bit
adder in your computer

42

Let's Make an Adder Circuit

Goal.  x + y = z for 4-bit integers.

Step 2.  [first attempt]
• Build truth table.

Q.  Why is this a bad idea?
A.  128-bit adder:  2256+1 rows  >>  # electrons in universe!

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

4-bit adder truth table

y2y3

0

0

0

0

1

.

1

0

0

0

0

0

.

1

x0x1

0

0

0

0

0

.

1

0

0

0

0

0

.

1

x2x3

0

0

0

0

0

.

1

0

0

0

0

0

.

1

y0y1

0

1

0

1

0

.

1

0

0

1

1

0

.

1

z2z3

0

0

0

0

1

.

1

0

0

0

0

0

.

1

z0z1

0

1

0

1

0

.

1

0

0

1

1

0

.

1

28+1 = 512 rows!

c0

0

0

0

0

0

.

1

cincout

43

Let's Make an Adder Circuit

Goal.  x + y = z for 4-bit integers.

Step 2.  Do one bit at a time!
• Build truth table for carry bit.
• Build truth table for summand bit.

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

c1c2c3 c0 = 0

carry bit

ci ci+1yixi

0

0

0

1

0

1

1

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

summand bit

ci ziyixi

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

cout

44

Let's Make an Adder Circuit

Goal.  x + y = z for 4-bit integers.

Step 3. A surprise!
• carry bit is majority function
• summand bit is odd parity function.

MAJ

0

0

0

1

0

1

1

1

ODD

0

1

1

0

1

0

0

1

ci ci+1yixi

0

0

0

1

0

1

1

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

ci ziyixi

0

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

x1x2x3 x0

y1y2y3 y0+

z1z2z3 z0

c1c2c3 c0 = 0cout

carry bit summand bit



45

Let's Make an Adder Circuit

Goal.  x + y = z for 4-bit integers.

Step 4.
• Transform Boolean expression into circuit (use known components!).
• Chain together 1-bit adders.
• That’s it!

46

Adder:  Interface

z0
z1
z2
z3

x0
x1
x2
x3
y0
y1
y2
y3

input buses

output bus

A bus is a group of wires that connect (carry data values) to other components. 

47

Adder:  Component Level View

z0
z1
z2
z3

x0
x1
x2
x3
y0
y1
y2
y3

input buses

output bus

48

Adder:  Switch Level View

z0
z1
z2
z3

x0
x1
x2
x3
y0
y1
y2
y3

input buses

output bus



Adder

Incrementer (easy, add 0001)

Bitwise AND, XOR (easy)

Decoder [next slide]

Shifter (clever, but we’ll skip details)

Multiplexer [next lecture]

Useful Combinational Circuits

49 50

Decoder

Decoder.  [n-bit]
• n address inputs, 2n data outputs.
•Addressed output bit is 1; others are 0.
• Compact implementation of n Boolean functions

3-bit Decoder

x0 x1 x2 z0 z1 z2 z3 z4 z5 z6 z7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

51

Decoder

Decoder.  [n-bit]
• n address inputs, 2n data outputs.
•Addressed output bit is 1; others are 0.
• Compact implementation of n Boolean functions

3-bit Decoder

x0 x1 x2 z0 z1 z2 z3 z4 z5 z6 z7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

0 0 1

0

1

0

0

0

0

0

0

1 1 0

0

0

0

0

0

0

1

0

Decoder application: Your computer’s ALU!

ALU: Arithmetic and Logic Unit
• implements instructions
• input, output connects

to registers via buses

Ex: TOY-Lite (10 bit words)
  1: add
  2: subtract
  3: and
  4: xor
  5: shift left
  6: shift right

Details:
• All circuits compute their result.
• Decoder lines AND all results.
• “one-hot” OR collects answer.

52

TOY opcode bits

add

and

xor

shift

right

sub

10-bit output bus

10-bit input buses



53

Summary

Lessons for software design apply to hardware design!
• Interface describes behavior of circuit.
• Implementation gives details of how to build it.

Layers of abstraction apply with a vengeance!
•On/off.
• Controlled switch.  [relay, transistor]
• Gates.  [AND, OR, NOT]
• Boolean circuit.  [MAJ, ODD]
•Adder.
• Shifter.
•Arithmetic logic unit.
• …
•TOY machine (stay tuned).
• Your computer.


