Digital Circuits

6. Combinational Circuits

Claude Shannon (1916 - 2001)

Building Blocks

- Q. What is a digital system?
- A. Digital: signals are 0 or 1.

analog: signals vary continuously

- Q. Why digital systems?
- A. Accurate, reliable, fast, cheap.

Basic abstractions.

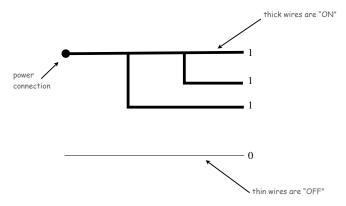
- On, off.
- Wire: propagates on/off value.
- Switch: controls propagation of on/off values through wires.

Applications. Cell phone, iPod, antilock brakes, microprocessors, ...

Wires

Wires.

- ON (1): connected to power.
- OFF (0): not connected to power.
- If a wire is connected to a wire that is on, that wire is also on.
- Typical drawing convention: "flow" from top, left to bottom, right.



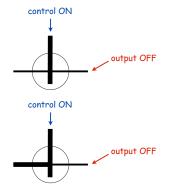
Controlled switch.

• 3 connections: input, output, control.

Controlled Switch

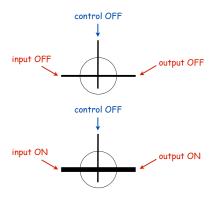
Controlled switch.

- 3 connections: input, output, control.
- control ON: output is disconnected from input



Controlled switch.

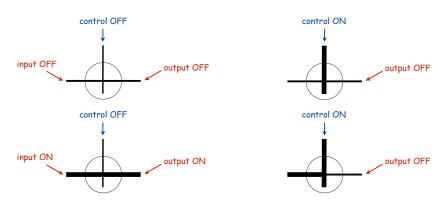
- 3 connections: input, output, control.
- control OFF: output is connected to input



Controlled Switch

Controlled switch.

- 3 connections: input, output, control.
- control OFF: output is connected to input
- control ON: output is disconnected from input

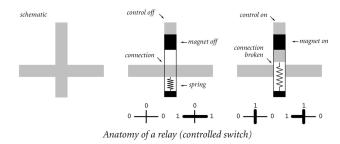


idealized model of "pass transistors" found in real integrated circuits

Implementing a Controlled Switch

Relay implementation.

- 3 connections: input, output, control.
- Magnetic force pulls on a contact that cuts electrical flow.



Controlled Switches: A First Level of Abstraction

Some amusing attempts to prove the point:

Technology	"Information"	Switch
pneumatic	air pressure	
fluid	water pressure	
relay	electric potential	

First Level of Abstraction

Separates physical world from logical world.

- we assume that switches operate as specified
- that is the only assumption
- physical realization of switch is irrelevant to design

Physical realization dictates performance

- size
- speed
- power

New technology immediately gives new computer.

Better switch? Better computer.

10

Controlled Switches: A First Level of Abstraction

Real-world examples that prove the point:

technology	switch
relay	
vacuum tube	
transistor	
"pass transistor" in integrated circuit	-
atom-thick transistor	

Controlled Switches: A First Level of Abstraction?

Circuit Anatomy

VLSI = Very Large Scale Integration

Technology:

Deposit materials on substrate.

Key property:

Crossing lines are controlled switches.

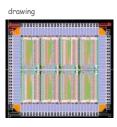
Key challenge in physical world:

Fabricating physical circuits with billions of controlled switches

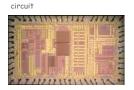
Key challenge in "abstract" world:

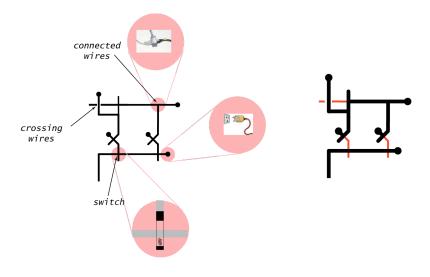
Understanding behavior of circuits with billions of controlled switches

Bottom line: Circuit = Drawing (!)



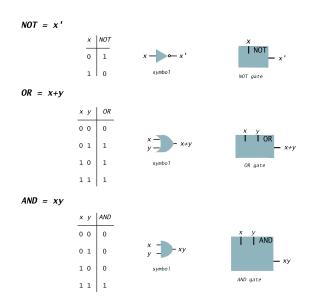
13



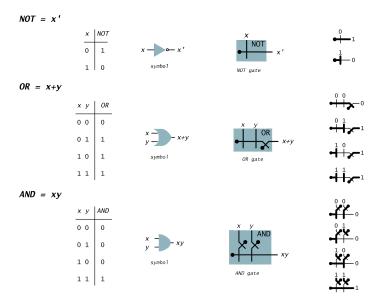


need more "levels of abstraction" to understand circuit behavior

Second Level of Abstraction: Logic Gates



Second Level of Abstraction: Logic Gates



implementations with switches

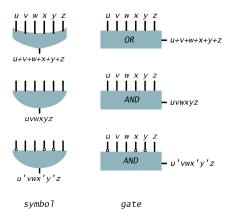
Multiway Gates

Multiway gates.

• OR: 1 if any input is 1; 0 otherwise.

• AND: 1 if all inputs are 1; 0 otherwise.

• Generalized: negate some inputs.



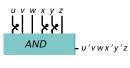
Building blocks (summary)

Wires

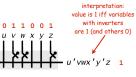
Controlled switches

Gates

Generalized multiway gates



AND gate implementation

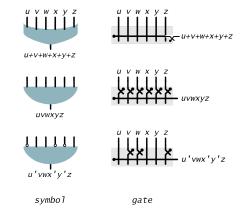


simpler version

Multiway Gates

Multiway gates.

- OR: 1 if any input is 1; 0 otherwise.
- AND: 1 if all inputs are 1; 0 otherwise.
- Generalized: negate some inputs.



18

Boolean Algebra

Boolean Algebra

History.

- Developed by Boole to solve mathematical logic problems (1847).
- Shannon master's thesis applied it to digital circuits (1937).

"possibly the most important, and also the most famous, master's thesis of the [20th] century" — Howard Gardner

Boolean algebra.

• Boolean variable: value is 0 or 1.

• Boolean function: function whose inputs and outputs are 0, 1.

Relationship to circuits.

Boolean variable: signal.Boolean function: circuit.

21

23

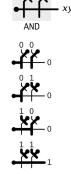
Truth Table

Truth table.

- Systematic method to describe Boolean function.
- One row for each possible input combination.
- n inputs $\Rightarrow 2^n$ rows.

Х	у	хy
0	0	0
0	1	0
1	0	0

AND truth table



Boole Orders Lunch

Copyright 2004, Sidney Harris
http://www.sciencecartoonsplus.com

Truth Table for Functions of 2 Variables

Truth table.

• 16 Boolean functions of 2 variables.

every 4-bit value represents one

22

х	у	ZERO	AND		х		у	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

truth table for all Boolean functions of 2 variables

x	у	NOR	EQ	y'		x'		NAND	ONE
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

truth table for all Boolean functions of 2 variables

Truth Table for Functions of 3 Variables

Truth table.

- 16 Boolean functions of 2 variables.
- 256 Boolean functions of 3 variables.
- $2^{(2^n)}$ Boolean functions of n variables!
- every 4-bit value represents one
- every 8-bit value represents one
- every 2n-bit value represents one

х	у	z	AND	OR	MAJ	ODD
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	1	0
1	0	0	0	1	0	1
1	0	1	0	1	1	0
1	1	0	0	1	1	0
1	1	1	1	1	1	1

some functions of 3 variables

25

Sum-of-Products

Sum-of-products. Systematic procedure for representing a Boolean function using AND, OR, NOT.

- Form AND term for each 1 in Boolean function.
- OR terms together.

proves that $\{AND, OR, NOT\}$ are universal

	у	z	MAJ	x'yz	xy'z	xyz'	xyz	x'yz + xy'z + xyz' + xyz
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0	1
1	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	1
1	1	0	1	0	0	1	0	1
1	1	1	1	0	0	0	1	1

expressing MAJ using sum-of-products

Universality of AND, OR, NOT

Fact. Any Boolean function can be expressed using AND, OR, NOT.

- { AND, OR, NOT } are universal.
- Ex: XOR(x, y) = xy' + x'y.

notation	meaning
x'	NOT x
x y	x AND y
x + y	x OR y

Expressing XOR Using AND, OR, NOT

x	у	x'	y'	x'y	xy'	x'y + xy'	x XOR y
0	0	1	1	0	0	0	0
0	1	1	0	1	0	1	1
1	0	0	1	0	1	1	1
1	1	0	0	0	0	0	0

Exercise. Show $\{AND, NOT\}, \{OR, NOT\}, \{NAND\}$ are universal.

Hint. DeMorgan's law: (x'y')' = x + y.

26

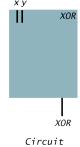
Translate Boolean Formula to Boolean Circuit

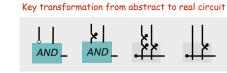
Sum-of-products. XOR.

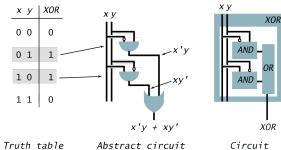
$$XOR = x'y + xy'$$

XOR
0
1
1
0

Truth table

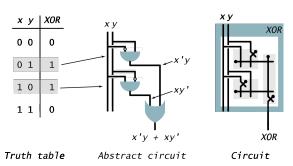






Example 1. XOR.

XOR = x'y + xy'



29

Translate Boolean Formula to Boolean Circuit

Translate Boolean Formula to Boolean Circuit

Example 2. Majority.

$$MAJ = x'yz + xy'z + xyz' + xyz$$

x	у	z	MAJ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Truth table

Circuit

Example 2. Majority.

MAJ = x'yz + xy'z + xyz' + xyz

0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

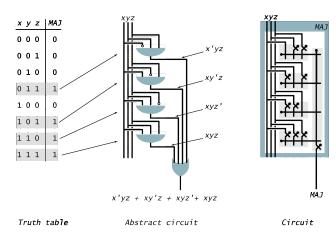
Truth table Abstract circuit

x'yz + xy'z + xyz' + xyz

MAJ

Circuit

Example 2. Majority.

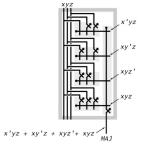


Simplification Using Boolean Algebra

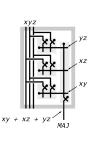
Many possible circuits for each Boolean function.

- Sum-of-products not necessarily optimal in:
 - -number of switches (space)
 - depth of circuit (time)

Ex.
$$MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz = xy + yz + xz$$
.



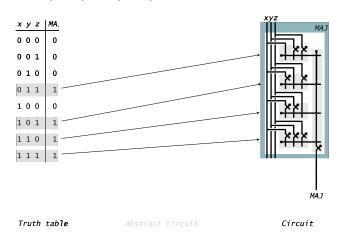
size = 10, depth = 2



size = 7, depth = 2

Example 2. Majority.

$$MAJ = x'yz + xy'z + xyz' + xyz$$



Combinational Circuit Design: Summary

Problem: Compute the value of a boolean function

Ingredients.

33

- AND gates.
- OR gates.
- NOT gates.
- Wire.

Instructions.

- Step 1: represent input and output signals with Boolean variables.
- Step 2: construct truth table to carry out computation.
- Step 3: derive (simplified) Boolean expression using sum-of products.
- Step 4: transform Boolean expression into circuit.

Bottom line (profound idea):

It is easy to design a circuit to compute ANY boolean function.

Caveat (stay tuned): Circuit might be huge.

Example 3. Odd parity

- 1 if odd number of inputs are 1.
- 0 otherwise.

			\downarrow					
х	у	z	ODD	x'y'z	x'yz'	xy'z'	xyz	x'y'z + x'yz' + xy'z' + xyz
0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	1
0	1	0	1	0	1	0	0	1
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

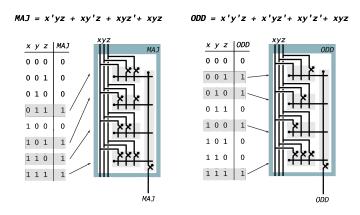
Expressing ODD using sum-of-products

37

Translate Boolean Formula to Boolean Circuit

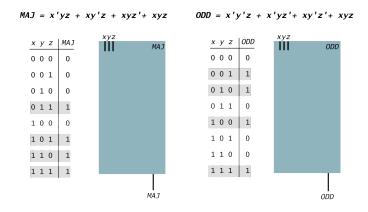
Example 3. Odd parity

- 1 if odd number of inputs are 1.
- 0 otherwise.



Example 3. Odd parity

- 1 if odd number of inputs are 1.
- 0 otherwise.



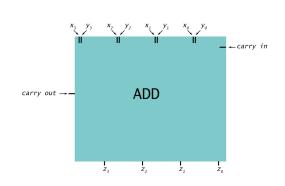
Adder Circuit

Let's Make an Adder Circuit

Goal. x + y = z for 4-bit integers.

- We build 4-bit adder: 9 inputs, 4 outputs.
- Each output bit is a boolean function of the inputs.
- Standard method applies.

Step 1. Represent input and output in binary.



	-	-	-	•
	2	4	8	7
+	3	5	7	9
	6	0	6	6

same idea scales to 64-bit

adder in your computer

	1	1	0	0
	0	0	1	0
+	0	1	1	1
	1	0	0	1

	x ₃	x ₂	x ₁	x ₀
+	Y 3	y ₂	y 1	y ₀
	z ₃	z ₂	z ₁	z ₀

41

Let's Make an Adder Circuit

Goal. x + y = z for 4-bit integers.

Step 2. Do one bit at a time!

- Build truth table for carry bit.
- Build truth table for summand bit.

c_{out}	c ₃	c ₂	c ₁	$c_0 = 0$)
	x ₃	x ₂	x ₁	\mathbf{x}_0	
+	y 3	y ₂	y 1	Y ₀	
	z ₃	z ₂	z ₁	z ₀	

	са	rry bit	
x_i	y_i	c_{i}	c_{i+I}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

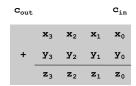
	sum	mand b	it
x_i	y_i	c_{i}	z_i
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Let's Make an Adder Circuit

Goal. x + y = z for 4-bit integers.

Step 2. [first attempt]

• Build truth table.



4-bit adder truth table

		<i>x</i> ₂		x_0		y ₂	y_I	y_0	z_3		z_I		
0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	0	0	0	1	
0	0	0	0	0	0	0	1	0	0	0	1	0	
0	0	0	0	0	0	0	1	1	0	0	1	1	28+1 = 512 rows!
0	0	0	0	0	0	1	0	0	0	1	0	0	
1	1	1	1	1	1	1	1	1	1	1	1	1	J

Q. Why is this a bad idea?

A. 128-bit adder: 2256+1 rows >> # electrons in universe!

Let's Make an Adder Circuit

Goal. x + y = z for 4-bit integers.

Step 3. A surprise!

- carry bit is majority function
- summand bit is odd parity function.

$\mathbf{c}_{\mathrm{out}}$	c ₃	c ₂	c ₁	$c_0 = 0$
	x ₃	x ₂	x ₁	x ₀
+	y 3	y ₂	y 1	Y ₀
	z ₃	z ₂	z ₁	z ₀

42

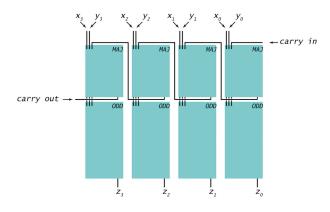
carry bit

x_i	y_i	c_{i}	c_{i+I}	MAJ
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

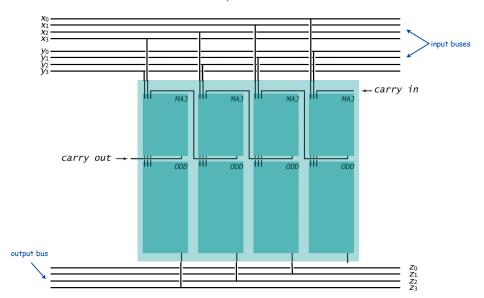
Goal. x + y = z for 4-bit integers.

Step 4.

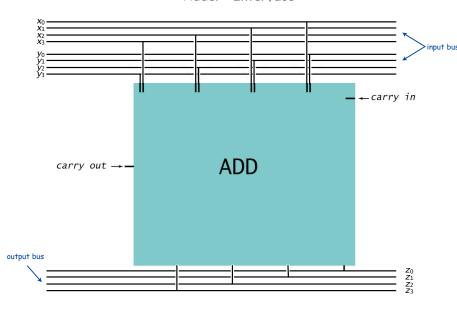
- Transform Boolean expression into circuit (use known components!).
- Chain together 1-bit adders.
- That's it!



Adder: Component Level View

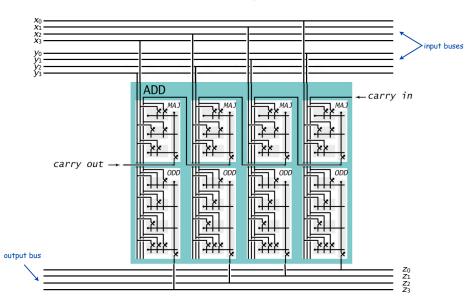


Adder: Interface



A bus is a group of wires that connect (carry data values) to other components.

Adder: Switch Level View



Useful Combinational Circuits

Adder Adder

Incrementer (easy, add 0001)

Bitwise AND, XOR (easy)

Decoder [next slide]

Shifter (clever, but we'll skip details)

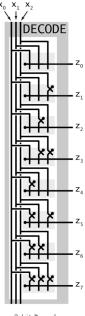
Multiplexer [next lecture]

Decoder

Decoder. [n-bit]

- n address inputs, 2ⁿ data outputs.
- Addressed output bit is 1; others are 0.
- Compact implementation of n Boolean functions

	x ₀	x ₁	x ₂	z ₀	z 1	z ₂	z ₃	z ₄	z ₅	z 6	z ₇
	0	0	0	1	0	0	0	0	0	0	0
	0	0	1	0	1	0	0	0	0	0	0
	0	1	0	0	0	1	0	0	0	0	0
Ì	0	1	1	0	0	0	1	0	0	0	0
ı	1	0	0	0	0	0	0	1	0	0	0
	1	0	1	0	0	0	0	0	1	0	0
	1	1	0	0	0	0	0	0	0	1	0
	1	1	1	0	0	0	0	0	0	0	1



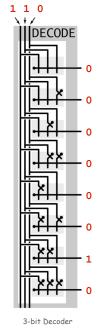
3-bit Decoder

Decoder

Decoder. [n-bit]

- n address inputs, 2ⁿ data outputs.
- Addressed output bit is 1; others are 0.
- Compact implementation of n Boolean functions

x ₀	x ₁	x ₂	z ₀	z 1	z ₂	z ₃	z ₄	z ₅	z 6	Z 7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1



Decoder application: Your computer's ALU!

ALU: Arithmetic and Logic Unit

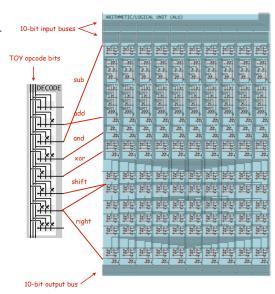
- implements instructions
- input, output connects to registers via buses

Ex: TOY-Lite (10 bit words)

- 1: add
- 2: subtract
- 3: and
- 4: xor
- 5: shift left
- 6: shift right

Detail

- · All circuits compute their result.
- · Decoder lines AND all results.
- "one-hot" OR collects answer.



Summary

Lessons for software design apply to hardware design!

- Interface describes behavior of circuit.
- Implementation gives details of how to build it.

Layers of abstraction apply with a vengeance!

- On/off.
- Controlled switch. [relay, transistor]
- Gates. [AND, OR, NOT]
- Boolean circuit. [MAJ, ODD]
- Adder.
- Shifter.
- Arithmetic logic unit.
- .
- TOY machine (stay tuned).
- Your computer.

