Fundamental Questions

Universality and Computability

7.4 Turing Machines

Alan Turing (1912-1954)

Q. What is a general-purpose computer?

- Q. Are there limits on the power of digital computers?
- Q. Are there limits on the power of machines we can build?

Pioneering work in the 1930s.

- Princeton == center of universe.
- Automata, languages, computability, universality, complexity, logic.

David Hilbert

Kurt Gödel

Alan Turing

Alonzo Church Jo

John von Neumann

Turing Machine

Desiderata. Simple model of computation that is "as powerful" as conventional computers.

Intuition. Simulate how humans calculate.

Ex. Addition.

		1	2	3	4	5	6	
	+	3	1	4	1	5	9	

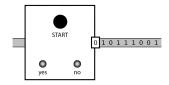
Last lecture: DFA

Tape.

- Stores input.
- One arbitrarily long strip, divided into cells.
- Finite alphabet of symbols.

Tape head.

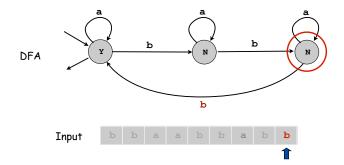
- Points to one cell of tape.
- Reads a symbol from active cell.
- Moves right one cell at a time.



Last lecture: Deterministic Finite State Automaton (DFA)

Simple machine with N states.

- Begin in start state.
- Read first input symbol.
- Move to new state, depending on current state and input symbol.
- Repeat until last input symbol read.
- Accept input string if last state is labeled Y.



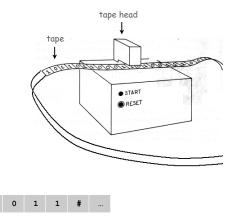
This lecture: Turing machine

Tape.

- Stores input, output, and intermediate results.
- One arbitrarily long strip, divided into cells.
- Finite alphabet of symbols.

Tape head.

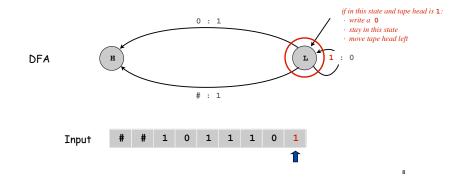
- Points to one cell of tape.
- Reads a symbol from active cell.
- Writes a symbol to active cell.
- Moves left or right one cell at a time.



This lecture: Turing Machine

Simple machine with N states.

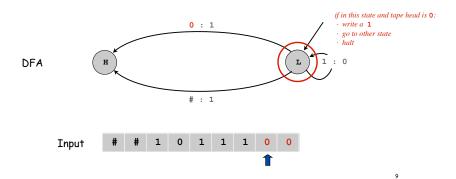
- Begin in start state.
- Read first input symbol.
- Move to new state and write new symbol on tape, depending on current state and input symbol.
- Move tape head left if state is labeled L, right if state is labeled R.
- Repeat until entering a state labelled H.
- · Accept input string state is labeled Y, reject if N



TM Example

Simple machine with N states.

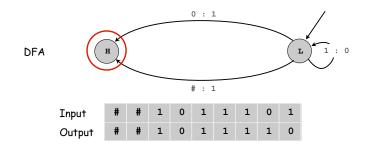
- Begin in start state.
- · Read first input symbol.
- Move to new state and write new symbol on tape, depending on current state and input symbol.
- Move tape head left if state is labeled L, right if state is labeled R.
- Repeat until entering a state labeled H.
- · Accept input string state is labeled Y, reject if N



TM Example

Simple machine with N states.

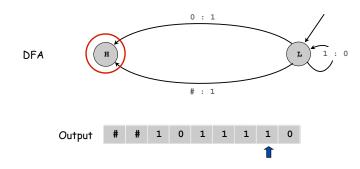
- Begin in start state.
- · Read first input symbol.
- Move to new state and write new symbol on tape, depending on current state and input symbol.
- Move tape head left if state is labeled L, right if state is labeled R.
- Repeat until entering a state labeled H.
- · Accept input string state is labeled Y, reject if N



TM Example

Simple machine with N states.

- · Begin in start state.
- · Read first input symbol.
- Move to new state and write new symbol on tape, depending on current state and input symbol.
- Move tape head left if state is labeled L, right if state is labeled R.
- Repeat until entering a state labeled H.
- · Accept input string state is labeled Y, reject if N



Turing Machine: Initialization and Termination

10

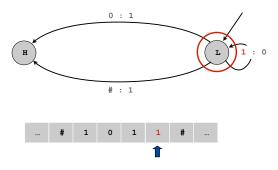
Initialization. Set input on some portion of tape; set tape head.

Termination. Stop if enter yes, no, or halt state.

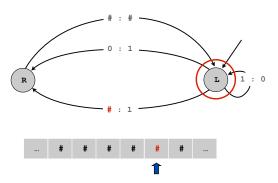
Note: infinite loop possible

Output. Contents of tape.

TM Example 1: Binary Increment

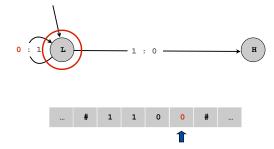


TM Example 2: Binary Counter

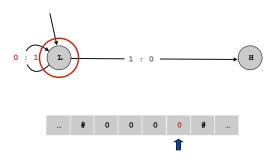


13

TM Example 3: Binary Decrement

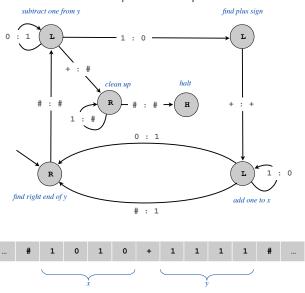


TM Example 3: Binary Decrement



Q. What happens if we try to decrement 0?

TM Example 4: Binary Adder



Ex. Use simulator to understand how this TM works.

17

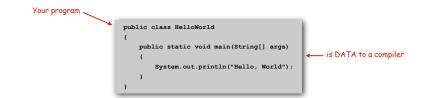
Universal Machines and Technologies

7.5 Universality

Program and Data

Data. Sequence of symbols (interpreted one way).

Program. Sequence of symbols (interpreted another way).

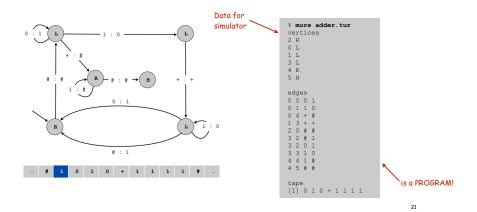


Program and Data

Data. Sequence of symbols (interpreted one way).

Program. Sequence of symbols (interpreted another way).

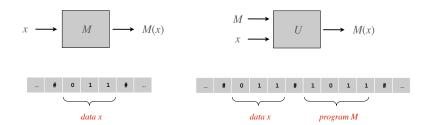
Ex 2. A simulator is a program that takes a program for one machine as input and simulates the operation of that program.



Universal Turing Machine

Turing machine M. Given input tape x, Turing machine M outputs M(x).

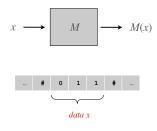
Universal Turing machine U. Given input tape with x and M, universal Turing machine U outputs M(x).



TM intuition. Software program that solves one particular problem. UTM intuition. Hardware platform that can implement any algorithm.

Universal Turing Machine

Turing machine M. Given input tape x, Turing machine M outputs M(x).



TM intuition. Software program that solves one particular problem.

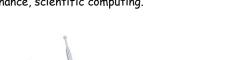
Universal Turing Machine

Consequences. Your laptop (a UTM) can do any computational task.

- Java programming.
- Pictures, music, movies, games.
- Email, browsing, downloading files, telephony.
- · Word-processing, finance, scientific computing.

• ...

23



Wenger Giant Swiss Army Knife

enger blant Swiss Army Knite

24

22

even tasks not yet contemplated

when laptop was purchased

Universal Turing Machine

Consequences. Your laptop (a UTM) can do any computational task.

- Java programming.
- Pictures, music, movies, games.

even tasks not yet contemplated when laptop was purchased

- Email, browsing, downloading files, telephony.
- · Word-processing, finance, scientific computing.

• ...

"Again, it [the Analytical Engine] might act upon other things besides numbers...the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent." — Ada Lovelace

25

"universal"

Church-Turing Thesis: Evidence

Evidence.

• 7 decades without a counterexample.

• Many, many models of computation that turned out to be equivalent.

model of computation	description				
enhanced Turing machines	multiple heads, multiple tapes, 2D tape, nondeterminism				
untyped lambda calculus	method to define and manipulate functions				
recursive functions	functions dealing with computation on integers				
unrestricted grammars	iterative string replacement rules used by linguists				
extended L-systems	parallel string replacement rules that model plant growth				
programming languages	Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel				
random access machines	registers plus main memory, e.g., TOY, Pentium				
cellular automata	cells which change state based on local interactions				
quantum computer	compute using superposition of quantum states				
DNA computer	compute using biological operations on DNA				

Church-Turing Thesis

Church Turing thesis (1936). Turing machines can do anything that can be described by any physically harnessable process of this universe.

Remark. "Thesis" and not a mathematical theorem because it's a statement about the physical world and not subject to proof.

but can be falsified

Use simulation to prove models equivalent.

- TOY simulator in Java
- Java compiler in TOY.

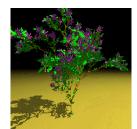
Implications.

- No need to seek more powerful machines or languages.
- Enables rigorous study of computation (in this universe).

Bottom line. Turing machine is a simple and universal model of computation.

2

Lindenmayer Systems: Synthetic Plants

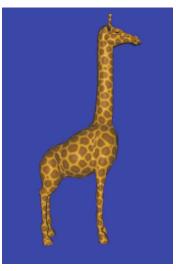


http://astronomy.swin.edu.au/~pbourke/modelling/plants

2

Cellular Automata: Synthetic Zoo





Reference: Generating textures on arbitrary surfaces using reaction-diffusion by Greg Turk, SIGGRAPH, 1991. History: The chemical basis of morphogenesis by Alan Turing, 1952.

29

31

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.

Example 1:

 BAB
 A
 AB
 BA

 A
 ABA
 B
 B

 0
 1
 2
 3

N = 4

Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

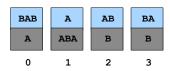
7.6 Computability

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.

Example 1:



N = 4

Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

Solution 1.

Yes.

A	ва	BAB	AB	A
ABA	В	A	В	ABA
-1			2	-

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.

Example 2:



N = 4

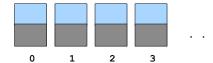
Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.



Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

Challenge:

• Write a program to take cards as input and solve the puzzle.

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.

Example 2:

N = 4

Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

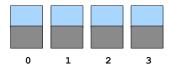
Solution 2.

No. First card in solution must contain same letter in leftmost position.

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.



Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

Challenge:

• Write a program to take cards as input and solve the puzzle.

Surprising fact:

• It is NOT POSSIBLE to write such a program!

Halting Problem

Halting problem. Write a Java function that reads in a Java function f and its input f, and decides whether f(f) results in an infinite loop.

Easy for some functions, not so easy for others.

Ex. Does f(x) terminate?

```
public void f(int x)
{
    while (x != 1)
    {
        if (x % 2 == 0) x = x / 2;
        else(x % 2 == 0) x = 3*x + 1;
    }
}

f(6): 6 3 10 5 16 8 4 2 1
f(27): 27 82 41 124 62 31 94 47 142 71 214 107 322 ... 4 2 1
f(-17): -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 ... -17 ...
```

Halting Problem Proof

Assume the existence of halt(f,x):

- Input: a function £ and its input x.
- Output: true if f(x) halts, and false otherwise.

Note. halt (f,x) does not go into infinite loop.

We prove by contradiction that halt(f,x) does not exist.

• Reductio ad absurdum: if any logical argument based on an assumption leads to an absurd statement, then assumption is false.

hypothetical halting function

Undecidable Problem

A yes-no problem is undecidable if no Turing machine exists to solve it.

and (by universality) no Java program either

Theorem. [Turing 1937] The halting problem is undecidable.

Proof intuition: lying paradox.

- Divide all statements into two categories: truths and lies.
- How do we classify the statement: "I am lying".

Key element of lying paradox and halting proof: self-reference.

Halting Problem Proof

Assume the existence of halt(f,x):

- Input: a function £ and its input x.
- Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:

- If halt(f,f) returns true, then strange(f) goes into an infinite loop.
- If halt(f,f) returns false, then strange(f) holts.

f is a string so legal (if perverse) to use for second input

```
public void strange(String f)
{
   if (halt(f, f))
   {
      // an infinite loop
      while (true) { }
   }
}
```

4

38

Halting Problem Proof

Assume the existence of halt (f.x):

- Input: a function £ and its input x.
- Output: true if f(x) halts, and false otherwise.

Construct function strange (f) as follows:

- If halt(f,f) returns true, then strange(f) goes into an infinite loop.
- If halt(f,f) returns false, then strange(f) holts.

In other words:

- If f(f) halts, then strange(f) goes into an infinite loop.
- If f(f) does not halt, then strange(f) halts.

41

Halting Problem Proof

Assume the existence of halt (f,x):

- Input: a function f and its input x.
- Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:

- If halt(f,f) returns true, then strange(f) goes into an infinite loop.
- If halt(f,f) returns false, then strange(f) halts.

In other words:

- If f(f) halts, then strange(f) goes into an infinite loop.
- If f(f) does not halt, then strange(f) halts.

Call strange () with ITSELF as input.

- If strange (strange) halts then strange (strange) does not halt.
- If strange (strange) does not halt then strange (strange) halts.

Either way, a contradiction. Hence halt(f,x) cannot exist.

Halting Problem Proof

Assume the existence of halt(f,x):

- Input: a function £ and its input x.
- Output: true if f(x) halts, and false otherwise.

Construct function strange (f) as follows:

- If halt(f,f) returns true, then strange(f) goes into an infinite loop.
- If halt(f,f) returns false, then strange(f) halts.

In other words:

- If f(f) halts, then strange(f) goes into an infinite loop.
- If f(f) does not halt, then strange(f) halts.

Call strange () with ITSELF as input.

- If strange (strange) halts then strange (strange) does not halt.
- If strange (strange) does not halt then strange (strange) halts.

Consequences

Q. Why is debugging hard?

A. All problems below are undecidable.

Halting problem. Give a function f, does it halt on a given input x?

Totality problem. Give a function f, does it halt on every input x?

No-input halting problem. Give a function f with no input, does it halt?

Program equivalence. Do two functions f and always return same value?

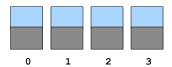
Uninitialized variables. Is the variable x initialized before it's used?

Dead-code elimination. Does this statement ever get executed?

Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.



Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

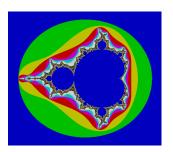
Challenge:

• Write a program to take cards as input and solve the puzzle.

is UNDECIDABLE

More Undecidable Problems

Optimal data compression. Find the shortest program to produce a given string or picture.



Mandelbrot set (40 lines of code)

More Undecidable Problems

Hilbert's 10th problem.

Devise a process according to which it can be determined by a finite number of operations whether a given multivariate polynomial has an integral root. — David Hilbert

- $f(x, y, z) = 6x^3yz^2 + 3xy^2 x^3 10$.
- yes: f(5,3,0) = 0.

• $f(x, y) = x^2 + y^2 - 3$.

no.

Definite integration.

Given a rational function f(x) composed of polynomial and trig functions.

Does $\int_{-\infty}^{+\infty} f(x) dx$ exist?

• $g(x) = \cos x (1 + x^2)^{-1}$

yes, $\int_{-\infty}^{+\infty} g(x) dx = \pi/e$.

• $h(x) = \cos x (1 - x^2)^{-1}$

no, $\int_{-\infty}^{+\infty} h(x) dx$ undefined.

More Undecidable Problems

Virus identification. Is this program a virus?

Melissa virus March 28, 1999

Turing's Key Ideas

Alan Turing

Turing machine.

formal model of computation

Program and data.

encode program and data as sequence of symbols

Universality.

concept of general-purpose, programmable computers

Church-Turing thesis.

 $computable \ at \ all == computable \ with \ a \ Turing \ machine$

Computability.

inherent limits to computation

Hailed as one of top 10 science papers of 20th century.

Reference: On Computable Numbers, With an Application to the Entscheidungsproblem by A. M. Turing. In Proceedings of the London Mathematical Society, ser. 2, vol. 42 (1936–7), pp.230-265.

Alan Turing (1912-1954).

- Father of computer science.
- Computer science's "Nobel Prize" is called the Turing Award.

It was not only a matter of abstract mathematics, not only a play of symbols, for it involved thinking about what people did in the physical world.... It was a play of imagination like that of Einstein or von Neumann, doubting the axioms rather than measuring effects.... What he had done was to combine such a naïve mechanistic picture of the mind with the precise logic of pure mathematics. His machines – soon to be called Turing machines – offered a bridge, a connection between abstract symbols, and the physical world. — John Hodges

Alan Turing (left) Elder brother (right)