7. Theory of Computation

definition
specified next model simple

tape USE JaVvaQqeonsider 5
E following abstract 2 3
g & 2 L number formal £ o 2
[] a i <
character 2 E g rg&:gnirion ¢ specifying address
see m “ args " read
specifies E n_ rol need solve
s specify
ample *
pe cla -
indicator code first
1
Introduction to Theoretical CS Why Learn Theory?
Q. What can a computer do? In theory ..
Q. What can a computer do with limited resources? * Deeper understanding of what is a computer and computing.
* Foundation of all modern computers.
General qppr‘oqch. e.g., Intel Core 2 Duo running Linux kernel 2.6 * Pure science.
* Don't talk about specific machines or problems. * Philosophical implications.
* Consider minimal abstract machines.
* Consider general classes of problems. In practice ...
* Web search: theory of pattern matching.
Pioneering work in the 1930s. * Sequential circuits: theory of finite state automata.
* Princeton == center of universe. * Compilers: theory of context free grammars.
 Automata, languages, computability, universality, complexity, logic. * Cryptography: theory of computational complexity.

* Data compression: theory of information.

“In theory there is no difference between theory and
practice. In practice there is.” — Yogi Berra

X AP
ah i &

David Hilbert Kurt Godel Alan Turing Alonzo Church John von Neumann

Regular Expressions

Pattern Matching Applications

Test if a string matches some pattern.

* Process natural language.

* Scan for virus signatures.

* Access information in digital libraries.

* Search-and-replace in a word processors.

* Filter text (spam, NetNanny, ads, Carnivore, malware).

* Validate data-entry fields (dates, email, URL, credit card).

* Search for markers in human genome using PROSITE patterns.

Parse text files.
* Compile a Java program.
* Crawl and index the Web.
* Read in data stored in TOY input file format.

* Automatically create Java documentation from Javadoc comments.

Describing a Pattern

PROSITE. Huge database of protein families and domains.
Q. How to describe a protein motif?

Ex. [signature of the C,H,-type zinc finger domain]
oC

* Between 2 and 4 amino acids.

oC

* 3 more amino acids.

* One of the following amino acids: LIVMFYWCX.

* 8 more amino acids.
oH

* Between 3 and 5 more amino acids.
oH

CAASCGGPYACGGWAGYHAGWH

Regular Expressions: Basic Operations

Regular expression. Notation to specify a set of strings.

regular expression matches does not match

concatenation aabaab aabaab every other string
. cumulus succubus
wildcard -u.u.u. Jugulum tumultuous
union aa | baab b:;b every other string
closure 2k aggza aéj;a
a(a|b)aab ZEZ:E every other string

parentheses
(ab) *a

a
ababababa

aa
abbba

Regular Expressions: Examples

Regular expression. Notation is surprisingly expressive.

regular expression does not m

.*spb.* raspberry subspace
contains the trigraph spb crispbread subspecies
a* | (a*ba*ba*ba*)* bbb b
. X aaa bb
ipftplte @ i 159 bbbaababbaa baabbbaa
SRCEERY 1000234 111111111
fifth to last digit is O 98701234 403982772
gcg (cgglagg) *ctg gcgetg gcgegyg
gcgeggetg cggcggeggetyg

fragile X syndrome indicator gcgeggaggety gegeaggety

Regular Expressions in Java

Validity checking. Is input in the set described by the re?

public class Validate

{
public static void main(String[] args) {
String re = args[0];
String input = args[1l];
StdOut.println (input.matches (re)) ;
} ! powerful string library method

Y C,H, type zinc finger domain

% java Validate "C.{2,4}C...[LIVMFYWC].{8}H.{3,5}H" CAASCGGPYACGGAAGYHAGAH
true . ™

legal Java identifier
% java Validate "[$_A-Za-z][$_A-Za-2z0-9]*" identl23
s / valid email address (simplified)
% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" wayne@cs.princeton.edu
true \

need quotes to "escape" the shell

Generalized Regular Expressions

Regular expressions are a standard programmer's tool.
* Built in to Java, Perl, Unix, Python, ...
* Additional operations typically added for convenience.
-Ex 1: [a-e]+ is shorthand for (alblc|d|e) (alblcld|e)*.
-Ex 2: \s is shorthand for “any whitespace character” (space, tab, ...).

abcde ade

one or more a(bc) +de abcbede e
lowercase camelCase

- - - *

character class [A-Za-z] [a-z] Capitalized 4illegal
08540-1321 111111111
exactly k [0-91{5}-[0-91 {4} 19072-5541 166-54-1111

negation [*aeiou] {6} rhythm decade

String Searching Methods

public class String (Java's String library)

: does this string match the given
boolean matches (String re) g‘ 8
"(’KUILH' expression

: : : replace all occurrences of regular
String replaceAll (String re, String str) ’ A R freg .
expression with the replacement string
N N N . elur > index of the first occurrence
int indexOf (String r, int from) return 1/1(. index .r_/ the /I.I st occurrence
of the string r after the index from

. : : split the string around matches of the
String[] split(String re) /_ 8 . f
given regular expression

RE that matches any sequence of
whitespace characters (af least 1).

String s = StdIn.readAll();
s = s.replaceAll("\\s+", " ");

replace each sequence of at least one
whitespace character with a single space

Extra \ distinguishes from the string \s+

String Searching Methods

DFAs

public class String (Java's String library)

: does this string match the given
boolean matches (String re) ° ©

regular expression

: : . replace all occurrences of regular
String replaceAll (String re, String str) eplac X L_ of regule .
expression with the replacement string

int indexOf (String r, int from) return the index of the first occurrence

of the string r after the index from

String[] split(String re) split the string around matches of the

given regular expression

String s = StdIn.readAll();
String[] words = s.split("\\s+");

create an array of the words in StdIn

Solving the Pattern Match Problem Deterministic Finite State Automaton (DFA)
Regular expressions are a concise way to describe patterns. Simple machine with N states.
* How would you implement the method matches () ? * Begin in start state.
* Hardware: build a deterministic finite state automaton (DFA). * Read first input symbol.
* Software: simulate a DFA. * Move to new state, depending on current state and input symbol.
* Repeat until last input symbol read.
DFA: simple machine that solves a pattern match problem. * Accept input string if last state is labeled V.

* Different machine for each pattern.
* Accepts or rejects string specified on input tape.
* Focus on true or false questions for simplicity.

] [ofoiiioox

Inpuf b b a a b b a b b

DFA and RE Duality

RE. Concise way to describe a set of strings.
DFA. Machine to recognize whether a given string is in a given set.

Duality.

* For any DFA, there exists a RE that describes the same set of strings.
* For any RE, there exists a DFA that recognizes the same set.

a* | (a*ba*ba*ba¥*)*

multiple of 3 b's

multiple of 3 b's

Practical consequence of duality proof: to match RE
* build DFA
* simulate DFA on input string.

Application: Harvester

Harvest information from input stream.

* Harvest patterns from DNA.

% java Harvester "gcg(cgg|agg) *ctg" chromosomeX.txt
gcgcggeggeggeggeggetyg

gcgctg

gcgetg

gcgcggceggceggaggcggaggeggety

Harvest email addresses from web for spam campaign.

o

rs@cs.princeton.edu
maia@cs.princeton.edu
doug@cs.princeton.edu

wayne@cs.princeton.edu

% java Harvester "[a-z]+@([a-z]+\.)+(edu|com)" http://www.princeton.edu/~cosl26

Implementing a Pattern Matcher

Problem. Given a RE, create program that tests
whether given input is in set of strings described.

Step 1. Build the DFA.
* A compiler!
* See COS 226 or COS 320.

Step 2. Simulate it with given input.

State state = start;
while (!'StdIn.isEmpty())
{
char c¢ = StdIn.readChar() ;
state = state.next(c);
}
StdOut.println(state.accept());

Application: Harvester

equivalent, but more efficient

. . . representation of a DFA
Harvest information from input stream. /

* Use pattern data type to compile regular expression to NFA.
* Use Matcher data type to simulate NFA.

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class Harvester

{

public static void main(String[] args)

{

String re = args[0];
In in = new In(args[1l]); create NFA from RE
String input in.readAll(); create NFA simulator

Pattern pattern Pattern.compile (re) ;
Matcher matcher = pattern.matcher (input) ;

look for next match

while (matcher.find())
StdOut.println (matcher.group()) ;

} the match most recently found

20

Application: Parsing a Data File Application: Parsing a Data File

import java.util.regex.Pattern;
import java.util.regex.Matcher;

Ex: parsing an NCBI genome data file.
public class ParseNCBI

header info {
public static void main(String[] args)
LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003 { .
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9, String re = "[]1*[0-9]+([actg]*).*";
ACCESSION AC146846 Pattern pattern = Pattern.compile (re) ;
VERSION AC146846.2 GI:38304214 .
KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT. In in = new In(args[0]);
SOURCE Ornithorhynchus anatinus (platypus) String data = "";
ORIGIN - Vim 4
1 tgtatttcat ttgaccgtgc tgttttttcc cggtttttca gtacggtgtt agggagccac uile (e ety ()
61 gtgattctgt ttgttttatg ctgeccgaata gctgetecgat gaatctctge atagacaget // a comment (
121 gccgcaggga gaaatgacca gtttgtgatg acaaaatgta ggaaagctgt ttcttcataa String line = in.readLine () ;
128101 ggaaatgcga cccccacget aatgtacage ttctttagat tg Matcher matcher = pattern.matcher(line);
1/ 1 if (matcher.find()) — extract the part of match in ()
\ data += matcher.group(l) .replaceAll (" ", "");
}
. comments System.out.println(data) ;
line numbers) Y P ()
spaces LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
} DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846
VERSION AC146846.2 GI:38304214
KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.
. . SOURCE Ornithorhynchus anatinus (platypus)
Goal. Extract the data as a single actg string. ORIGIN
1 tgtatttcat ttgaccgtgc tgttttttcc cgqtttttca gtacggtgtt aqggagccac
61 g t ttg // a comment
121 gccgcaggga gaaatgacca gtttgtgatg acaaaatgta ggaaagctgt ttc\:tcataa
128i6i ggaaatgcga cccccacget aatgtacage ttctttagat tg
1/
21 22
Regular Expressions Summary
OH NO! THE KILLER | | BUT TO FIND THEM WE'D HAVE TO SEARCH Pr‘ogmmmer.
WHENEVER T LEARN A\ | | MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR . .
HER ON VACATION! || SoMETHING FORMATTED L IKE AN ADDRESS! * Regular expressions are a powerful pattern matching tool.

X% ﬁ%i\ IT5 HOPELESS| * Implement regular expressions with finite state machines.

Theoretician.

LETS ME SAVE THE DAY.

* RE is a compact description of a set of strings.
EVERVBIDY ST BACK. * DFA is an abstract machine that solves RE pattern match problem.
X You. Practical application of core CS principles.

{8 B

http://xked.com/208/
24

Fundamental Questions

Q. Are there patterns that cannot be described by any RE?

A. Yes.

* Bit strings with equal number of Os and 1s.

* Strings that represent legal REs.

* Decimal strings that represent prime numbers.

* DNA strings that are Watson-Crick complemented palindromes.

Fundamental Questions

Q. Are there languages that cannot be recognized by any DFA?
A. Yes: Bit strings with equal humber of Os and 1s.

Proof sketch.

* Suppose that you have such a DFA, with N states.
* Give it N+1 Os followed by N+1 1s.

* Some state is revisited.

* Delete substring between visits.

* DFA recognizes that string, too.

* It does not have equal humber of Os and 1s.

* Contradiction.

* No such DFA exists.

Fundamental Questions

Q. Are there languages that cannot be recognized by any DFA?
A. Yes.

* Bit strings with equal number of Os and 1s.

* Strings that represent legal REs.

* Decimal strings that represent prime numbers.

* DNA strings that are Watson-Crick complemented palindromes.

26

Fundamental Questions

Q. Are there languages that cannot be recognized by any DFA?
A. Yes.

* Bit strings with equal number of Os and 1s.

* Strings that represent legal REs.

* Decimal strings that represent prime numbers.

* DNA strings that are Watson-Crick complemented palindromes.

Fundamental problem: DFA lacks memory.

28

Fundamental Questions

Q. Are there machines that are more powerful than a DFA?
A. Yes.

A 1-stack DFA can recognize

* Bit strings with equal number of Os and 1s.
* Legal REs.

* Watson-Crick complemented palindromes.

Fundamental Questions

Q. Are there machines that are more powerful than a 2-stack DFA?
A. No! Not even a supercomputer!

O
NI

———
ANTNNHINONSSN A =SSN

@ START
@RESET

2-stack DF As are equivalent to Turing machines [stay tuned].

31

Fundamental Questions

Q. Are there machines that are more powerful than a 1-stack DFA?
A. Yes.

A 2-stack DFA can recognize
* Prime numbers.
* Legal Java Programs.

30

