
1

7. Theory of Computation

3

Introduction to Theoretical CS

Q. What can a computer do?
Q. What can a computer do with limited resources?

General approach.
•Don't talk about specific machines or problems.
• Consider minimal abstract machines.
• Consider general classes of problems.

Pioneering work in the 1930s.
• Princeton == center of universe.
•Automata, languages, computability, universality, complexity, logic.

David Hilbert Kurt Gödel Alan Turing Alonzo Church John von Neumann

e.g., Intel Core 2 Duo running Linux kernel 2.6

4

Why Learn Theory?

In theory …
•Deeper understanding of what is a computer and computing.
• Foundation of all modern computers.
• Pure science.
• Philosophical implications.

In practice …
•Web search: theory of pattern matching.
• Sequential circuits: theory of finite state automata.
• Compilers: theory of context free grammars.
• Cryptography: theory of computational complexity.
• Data compression: theory of information.

“ In theory there is no difference between theory and
 practice. In practice there is.” – Yogi Berra

Regular Expressions

6

Describing a Pattern

PROSITE. Huge database of protein families and domains.

Q. How to describe a protein motif?

Ex. [signature of the C2H2-type zinc finger domain]
•C
•Between 2 and 4 amino acids.
•C
• 3 more amino acids.
•One of the following amino acids: LIVMFYWCX.
• 8 more amino acids.
•H
•Between 3 and 5 more amino acids.
•H

CAASCGGPYACGGWAGYHAGWH

7

Pattern Matching Applications

Test if a string matches some pattern.
• Process natural language.
• Scan for virus signatures.
• Access information in digital libraries.
• Search-and-replace in a word processors.
• Filter text (spam, NetNanny, ads, Carnivore, malware).
• Validate data-entry fields (dates, email, URL, credit card).
• Search for markers in human genome using PROSITE patterns.

Parse text files.
• Compile a Java program.
• Crawl and index the Web.
• Read in data stored in TOY input file format.
•Automatically create Java documentation from Javadoc comments.

8

Regular Expressions: Basic Operations

Regular expression. Notation to specify a set of strings.

every other stringaabaabaabaabconcatenation

every other string
aaaab
abaaba(a|b)aab

parentheses
(ab)*a

ab*a

aa | baab

.u.u.u.

regular expression

aa
abbba

a
ababababa

ab
ababa

aa
abbbaclosure

union

wildcard

operation

every other string
aa

baab

succubus
tumultuous

cumulus
jugulum

does not matchmatches

9

Regular Expressions: Examples

Regular expression. Notation is surprisingly expressive.

b
bb

baabbbaa

bbb
aaa

bbbaababbaa

a* | (a*ba*ba*ba*)*

multiple of three b’s

111111111
403982772

1000234
98701234

.*0....

fifth to last digit is 0

subspace
subspecies

raspberry
crispbread

.*spb.*

contains the trigraph spb

gcgcgg
cggcggcggctg
gcgcaggctg

gcgctg
gcgcggctg

gcgcggaggctg

gcg(cgg|agg)*ctg

fragile X syndrome indicator

regular expression does not matchmatches

10

Generalized Regular Expressions

Regular expressions are a standard programmer's tool.
• Built in to Java, Perl, Unix, Python, ….
•Additional operations typically added for convenience.

– Ex 1: [a-e]+ is shorthand for (a|b|c|d|e)(a|b|c|d|e)*.
– Ex 2: \s is shorthand for “any whitespace character” (space, tab, ...).

111111111
166-54-1111

08540-1321
19072-5541[0-9]{5}-[0-9]{4}exactly k

decaderhythm[^aeiou]{6}negation

camelCase
4illegal

lowercase
Capitalized[A-Za-z][a-z]*character class

ade
bcde

abcde
abcbcdea(bc)+deone or more

regular expressionoperation does not matchmatches

11

Regular Expressions in Java

Validity checking. Is input in the set described by the re?

public class Validate
{
 public static void main(String[] args) {
 String re = args[0];
 String input = args[1];
 StdOut.println(input.matches(re));
 }
}

% java Validate "C.{2,4}C...[LIVMFYWC].{8}H.{3,5}H" CAASCGGPYACGGAAGYHAGAH
true

% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" ident123
true

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" wayne@cs.princeton.edu
true

legal Java identifier

valid email address (simplified)

need quotes to "escape" the shell

C2H2 type zinc finger domain

powerful string library method

12

String Searching Methods

String s = StdIn.readAll();
s = s.replaceAll("\\s+", " ");

public class String (Java's String library)

replace all occurrences of regular
expression with the replacement string

replaceAll(String re, String str)String

return the index of the first occurrence
of the string r after the index from

indexOf(String r, int from)int

does this string match the given
regular expression

matches(String re)boolean

split the string around matches of the
given regular expression

split(String re)String[]

replace each sequence of at least one
whitespace character with a single space

RE that matches any sequence of
whitespace characters (at least 1).

Extra \ distinguishes from the string \s+

13

String Searching Methods

public class String (Java's String library)

replace all occurrences of regular
expression with the replacement string

replaceAll(String re, String str)String

return the index of the first occurrence
of the string r after the index from

indexOf(String r, int from)int

does this string match the given
regular expression

matches(String re)boolean

split the string around matches of the
given regular expression

split(String re)String[]

String s = StdIn.readAll();
String[] words = s.split("\\s+");

create an array of the words in StdIn

DFAs

15

Solving the Pattern Match Problem

Regular expressions are a concise way to describe patterns.
•How would you implement the method matches() ?
•Hardware: build a deterministic finite state automaton (DFA).
• Software: simulate a DFA.

DFA: simple machine that solves a pattern match problem.
•Different machine for each pattern.
•Accepts or rejects string specified on input tape.
• Focus on true or false questions for simplicity.

16

Deterministic Finite State Automaton (DFA)

Simple machine with N states.
• Begin in start state.
• Read first input symbol.
•Move to new state, depending on current state and input symbol.
• Repeat until last input symbol read.
•Accept input string if last state is labeled Y.

Y N

b b a a b b a b bb b a a b b a b bInput

DFA

N
b b

 a a a

 b

17

DFA and RE Duality

RE. Concise way to describe a set of strings.
DFA. Machine to recognize whether a given string is in a given set.

Duality.
• For any DFA, there exists a RE that describes the same set of strings.
• For any RE, there exists a DFA that recognizes the same set.

Practical consequence of duality proof: to match RE
• build DFA
• simulate DFA on input string.

a* | (a*ba*ba*ba*)*

multiple of 3 b's
multiple of 3 b's

18

Implementing a Pattern Matcher

Problem. Given a RE, create program that tests
whether given input is in set of strings described.

Step 1. Build the DFA.
•A compiler!
• See COS 226 or COS 320.

Step 2. Simulate it with given input.

State state = start;
while (!StdIn.isEmpty())
{
 char c = StdIn.readChar();
 state = state.next(c);
}
StdOut.println(state.accept());

19

Application: Harvester

Harvest information from input stream.

•Harvest patterns from DNA.

•Harvest email addresses from web for spam campaign.

% java Harvester "[a-z]+@([a-z]+\.)+(edu|com)" http://www.princeton.edu/~cos126
rs@cs.princeton.edu
maia@cs.princeton.edu
doug@cs.princeton.edu
wayne@cs.princeton.edu

% java Harvester "gcg(cgg|agg)*ctg" chromosomeX.txt
gcgcggcggcggcggcggctg
gcgctg
gcgctg
gcgcggcggcggaggcggaggcggctg

20

Application: Harvester

Harvest information from input stream.
•Use Pattern data type to compile regular expression to NFA.
•Use Matcher data type to simulate NFA.

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class Harvester
{
 public static void main(String[] args)
 {
 String re = args[0];
 In in = new In(args[1]);
 String input = in.readAll();
 Pattern pattern = Pattern.compile(re);
 Matcher matcher = pattern.matcher(input);

 while (matcher.find())
 StdOut.println(matcher.group());

 }
}

equivalent, but more efficient
representation of a DFA

the match most recently found

look for next match

create NFA from RE

create NFA simulator

21

Application: Parsing a Data File

Ex: parsing an NCBI genome data file.

Goal. Extract the data as a single actg string.

LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846
VERSION AC146846.2 GI:38304214
KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.
SOURCE Ornithorhynchus anatinus (platypus)
ORIGIN
 1 tgtatttcat ttgaccgtgc tgttttttcc cggtttttca gtacggtgtt agggagccac
 61 gtgattctgt ttgttttatg ctgccgaata gctgctcgat gaatctctgc atagacagct // a comment
 121 gccgcaggga gaaatgacca gtttgtgatg acaaaatgta ggaaagctgt ttcttcataa
 ...
128101 ggaaatgcga cccccacgct aatgtacagc ttctttagat tg
//

header info

line numbers comments

spaces

22

Application: Parsing a Data File

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class ParseNCBI
{
 public static void main(String[] args)
 {
 String re = "[]*[0-9]+([actg]*).*";
 Pattern pattern = Pattern.compile(re);
 In in = new In(args[0]);
 String data = "";
 while (!in.isEmpty())
 {
 String line = in.readLine();
 Matcher matcher = pattern.matcher(line);
 if (matcher.find())
 data += matcher.group(1).replaceAll(" ", "");
 }
 System.out.println(data);
 }

}
LOCUS AC146846 128142 bp DNA linear HTG 13-NOV-2003
DEFINITION Ornithorhynchus anatinus clone CLM1-393H9,
ACCESSION AC146846
VERSION AC146846.2 GI:38304214
KEYWORDS HTG; HTGS_PHASE2; HTGS_DRAFT.
SOURCE Ornithorhynchus anatinus (platypus)
ORIGIN
 1 tgtatttcat ttgaccgtgc tgttttttcc cggtttttca gtacggtgtt agggagccac
 61 gtgattctgt ttgttttatg ctgccgaata gctgctcgat gaatctctgc atagacagct // a comment
 121 gccgcaggga gaaatgacca gtttgtgatg acaaaatgta ggaaagctgt ttcttcataa
 ...
128101 ggaaatgcga cccccacgct aatgtacagc ttctttagat tg
//

extract the part of match in ()

23

Regular Expressions

http://xkcd.com/208/

24

Summary

Programmer.
• Regular expressions are a powerful pattern matching tool.
• Implement regular expressions with finite state machines.

Theoretician.
• RE is a compact description of a set of strings.
• DFA is an abstract machine that solves RE pattern match problem.

You. Practical application of core CS principles.

25

Fundamental Questions

Q. Are there patterns that cannot be described by any RE?
A. Yes.
• Bit strings with equal number of 0s and 1s.
• Strings that represent legal REs.
•Decimal strings that represent prime numbers.
•DNA strings that are Watson-Crick complemented palindromes.

26

Fundamental Questions

Q. Are there languages that cannot be recognized by any DFA?
A. Yes.
• Bit strings with equal number of 0s and 1s.
• Strings that represent legal REs.
•Decimal strings that represent prime numbers.
•DNA strings that are Watson-Crick complemented palindromes.

27

Fundamental Questions

Q. Are there languages that cannot be recognized by any DFA?
A. Yes: Bit strings with equal number of 0s and 1s.

Proof sketch.
• Suppose that you have such a DFA, with N states.
• Give it N+1 0s followed by N+1 1s.
• Some state is revisited.
•Delete substring between visits.
• DFA recognizes that string, too.
• It does not have equal number of 0s and 1s.
• Contradiction.
•No such DFA exists.

b b a a b b a b b1 1 1 1 1 1 1 1 1b b a a b b a b b0 0 0 0 0 0 0 0 0

0 1 3 5 6 8 7 3 5 . . .

1 1 1 1 1 1 1 1 10 0 0 0

0 1 3 5 . . .

28

Fundamental Questions

Q. Are there languages that cannot be recognized by any DFA?
A. Yes.
• Bit strings with equal number of 0s and 1s.
• Strings that represent legal REs.
•Decimal strings that represent prime numbers.
•DNA strings that are Watson-Crick complemented palindromes.

Fundamental problem: DFA lacks memory.

29

Fundamental Questions

Q. Are there machines that are more powerful than a DFA?
A. Yes.

A 1-stack DFA can recognize
• Bit strings with equal number of 0s and 1s.
• Legal REs.
•Watson-Crick complemented palindromes.

30

Fundamental Questions

Q. Are there machines that are more powerful than a 1-stack DFA?
A. Yes.

A 2-stack DFA can recognize
• Prime numbers.
• Legal Java Programs.

31

Fundamental Questions

Q. Are there machines that are more powerful than a 2-stack DFA?
A. No! Not even a supercomputer!

2-stack DFAs are equivalent to Turing machines [stay tuned].

