5. The TOY Machine

OUTPUT

Introduction to Computer Science * Sedgewick and Wayne - Copyright © 2007 - http://www.cs.Princeton.EDU/IntroCS

Why Study TOY?

Machine language programming.

* How do Java programs relate to computer?

* Key to understanding Java references.

= Still situations today where it is really necessary.

multimedia, computer games, scientific computing, SSE, AVX

Computer architecture.
= How does it work?

= How is a computer put together?

TOY machine. Optimized for simplicity, not cost or performance.

What is TOY?

An imaginary machine similar to:
= Ancient computers.

= Today's microprocessors.

DIGITAL EQUIPMENT CORPFPORA TION Sacx |
POPES

Inside the Box

Switches. Input data and programs. Registers.
= Fastest form of storage.

Lights. View data. = Scratch space during computation.
= 16 16-bit registers.

Memory. " Register O is always O.

= Stores data and programs.
= 256 16-bit "words."
= Special word for stdin / stdout.

Arithmetic-logic unit (ALU). Manipulate
data stored in registers.

Standard input, standard output. Interact
Program counter (PC). with outside world.

= Anextra 8-bit register.

= Keeps track of next instruction to
be executed.

Data and Programs Are Encoded in Binary

Each bit consists of two states:
= 1 or O; true or false.

= Switch is on or of f; wire has high voltage or low voltage.

Everything stored in a computer is a sequence of bits.
= Data and programs.

= Text, documents, pictures, sounds, movies, executables, ...

o] 0 = 755 = oloo111, - ams

olool ol M = 77,, = 01001101, = 4D,
5

Binary Encoding
How to represent integers?

= Use binary encoding. dec Bin dec Bin
= Ex: 6375,, = 0001100011100111, 0000 1000
0001 Bl o
0010 10 1010
Bl o 1011
0100 1100
0101 1101
0110 1110
0111 15 1111

DEDEEEDOEOEEE
0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

6375, +212 4211 +27 426 425 +22 421 420

4096 +2048 +128 +64 +32 +4 +2 +1

Binary People

There are only 10 types

of people in the world:
Those who understand binary
and those who don't.

http://waw. thinkgeek.com/tshirts/frustrations/5aa9/zoom/

Hexadecimal Encoding

How to represent integers?

* Use hexadecimal encoding. Bin Hex Dec

= Binary code, four bits at a time. 0000 0
= Ex: 6375, =0001100011100111, boes | 4 “
= 18E7,, 0010 2 10
0011 3
0100 4
0101 5
0110 6
0111 7 15
oz az s o s [] o e[| el s 2] o]
| @®| @ 1|1|0|@|0|1|1|1|0|60|1|1|1
1 8 E 7
6375, = 1 x 163 + 8 x 162 + 14 x 16! + 7 x 160

4096 + 2048 + 224 + 7

1000
1001
1010
1011
1100
1101
1110
1111

©

M H O Q W o»

0000 0000 0000 0000

0000 0000 0000 0000 instruction

Machine "Core" Dump

Machine contents at a particular place and time.
= Record of what program has done.
= Completely determines what machine will do.

Main Memory
Registers pc

(o w0 e

0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
00 0000 0000

EIEEIED ..o

0000 0000 0000
0000 0000 0000
data : 0000 0000 0000

program

0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000

variables
0000 0000 0000 0000 0000 0000 0000

A Sample Program

Program counter. The pc is initially 10, so the machine
interprets 8a00 as an instruction.

00: 0008 8

01: 0005 5

EElE [e
0000 0000 0000 10: 8200 RA < mem[00]
11: 8B01 RB < mem[01]
Registers Progfam counter 12: 1CAB RC < RA + RB

13: 9c02 mem[02] < RC
14: 0000 halt

index of next
instruction o execute add. toy

A Sample Program

A sample program. Adds 0008 + 0005 = 000D.

TOY memory
(program and data) comments
00: 0008 8
01: 0005 5
D B o
0000 0000 0000 10 10: 8A00 RA < mem[00]
11: 8BO1 RB < mem[01]
Registers Program counter 12: 1CAB RC < RA + RB

13: 9c02 mem[02] < RC
14: 0000 halt

add. toy

Load

Load. [opcode 8]
= Loads the contents of some memory location into a register.

* 800 means load the contents of memory cell 00 into register a.

00: 0008 8
01: 0005 5
I)) R
0000 0000 0000 10: 8200 RA < mem[00]
11: 8B01 RB < mem[01]
Registers Program counter 12: 1CAB RC < RA + RB

13: 9co02 mem[02] < RC
14: 0000 halt

add. toy
HEEH IEZN IFEN I T R N R R Y N R
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
816 A 0046

Load

Load. [opcode 8]
= Loads the contents of some memory location into a register.

* 8801 means load the contents of memory cell 01 into register B.

00: 0008 8

01: 0005 5

e @ e
0008 0000 0000 10: 8A00 RA < mem[00]
11: 8BO1 RB < mem[01]
Registers Program counter 12: 1CAB RC < RA + RB

13: 9c02 mem[02] < RC
14: 0000 halt

add. toy
| 15] 11312/]20] 9 8] 7]6]s][af3]2]1]0]
1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
816 Big 016

Store

Store. [opcode 9]
= Stores the contents of some register info a memory cell.

* 9c02 means store the contents of register c info memory cell 02.

00: 0008 8
01: 0005 5
0

R B G

0008 0005 000D 10: 8A00 RA < mem[00]
11: 8BO1 RB < mem[01]
Registers Program counter 12: 1CAB RC < RA + RB

13: 9C02 mem[02] < RC
14: 0000 halt

add. toy
| 15] 11312/]20] 9 8] 7]6]s][af3]2]1]0]
1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0
9.6 Ci6 024

Add

Add. [opcode 1]
= Add contents of two registers and store sum in a third.

* 1caB means add the contents of registers 2 and B and put the result into
register c.

00: 0008 8

01: 0005 5

EEE] (@ e
0008 0005 0000 10: 8A00 RA < mem[00]
11: 8BO1 RB < mem[01]
Registers Program counter 12: 1CAB RC < RA + RB

13: 9c02 mem[02] < RC
14: 0000 halt

add. toy

JEE Y I I) D D N ey
0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1

116 c16 A16 B16

Halt

Halt. [opcode 0]
= Stop the machine.

00: 0008 8
01: 0005 5

I

0008 0005 000D 14 10: 8A00 RA < mem[00]
11: 8BO1 RB < mem[01]
Registers Program counter 12: 1CAB RC < RA + RB

13: 9co02 mem[02] < RC
14: 0000 halt

add. toy

Program and Data

Instructions

Program. Sequence of 16-bit integers, > n halt
interpreted one way. o
g add
n subtract
Data. Sequence of 16-bit integers, and
interpreted other way. n Yor
R shiftefr
Program counter (pc). Holds memory address n shift right
of the "next instruction" and determines load address
which integers get interpreted as instructions. - n load
-> n store
16 instruction types. Change contents of n load indirect
registers, memory, and pc in specified, ﬂ Siare findlias)
well-defined ways.
: branch zero
n branch positive
ﬂ jump register
ﬂ Jjump and link

17

TOY Reference Card

Format 1 opcode dest d source s source t

opcode dest d addr

0: halt 1 exit(0)

1: add 1 R[d] < R[s] + R[t]

2: subtract 1 R[d] < R[s] - R[t]

3: and 1 R[d] < R[s] & R[t]

4: xor 1 R[d] < R[s] *~ R[t]

5: shift left 1 R[d] < R[s] << R[t]

6: shift right 1 R[d] < R[s] >> R[t]

7: load addr 2 R[d] < addr

8: |oad 2 R[d] < mem[addr]

9: store 2 mem[addr] < RI[d] Register O always O.

A: |oad indirect 1 R[d] < mem[R[t]] Loads from mem [FF] from stdin.
B: store indirect 1 mem[R[t]] < R[d] Stores fo men [FF] to stdout.
C: branch zero 2 if (R[d] == 0) pc < addr

D: branch positive 2 if (R[d] > 0) pc < addr

E: jump register 2 pc < R[d]

F: jump and link 2 R[d] < pc; pc < addr

TOY Instruction Set Architecture

TOY instruction set architecture (ISA).
= Interface that specifies behavior of machine.
= 16 register, 256 words of main memory, 16-bit words.
= 16 instructions.
and each 16-bit value is an instruction!
Each instruction consists of 16 bits.
= Bits 12-15 encode one of 16 instruction types or opcodes.
= Bits 8-11 encode destination register d.

= Bits 0-7 encode:
[Format 1] source registers s and t
[Format 2] 8-bit memory address or constant

ElaeE=lEme e vls [scs a2 o]
1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0

18

Interfacing with the TOY Machine

To enter a program or data:

= Set 8 memory address switches.

= Set 16 data switches.

* Press Load: data written into addressed word of memory.

To view the results of a program:
= Set 8 memory address switches.
* Press Look: contents of addressed word appears in lights.

Look Step
OUTPUT

Using the TOY Machine: Run Flow Control

To run the program: Flow control.
= Set 8 memory address switches to address of first instruction. * To harness the power of TOY, need loops and conditionals.
* Press Look to set pc to first instruction. * Manipulate pc to control program flow.

* Press run button to repeat fetch-execute cycle until halt opcode.

Branch if zero. [opcode C]
= Changes pc depending on whether value of some register is zero.
Fetch-execute cycle. = Used to implement: for, while, if-else.
= Fetch: get instruction from memory.
= Execute: update pc move data to or from \J Branch if positive. [opcode D]
memory and registers, perform calculations. s * Changes pc depending on whether value of some register is positive.

* Used to implement: for, while, if-else.

An Example: Multiplication Multiply

Multiply. Given integers a and b, compute c = a x b.
0A: 0003 3

OB: 0009
0c: 0000 0 <« output

<— inputs

©

TOY multiplication. No direct support in TOY hardware.

OD: 0000
OE: 0001 1

o

«<— constants

Brute-force multiplication algorithm: S 0 = S
- Tnitiali by 10: 8A0A RA < mem[0A] a
Initialize c to 0. int ¢ = U; 11: 8BOB RB < mem[OB] b
= Add b to c, a times. while (a '= 0) { 12: 8COD RC < mem[OD] c=20
! c=c+b;
a=a-1; 13: 810E Rl < mem[OE] always 1
}
14: CAl8 if (RA == 0) pc < 18 while (a !'= 0) {
loop 15: 1CCB RC < RC + RB c=c+b
brute force multiply in Java 16: 2AAl RA < RA - Rl a=a-1
17: Cc014 pc < 14 }

18: 9coOC mem[0C] < RC
19: 0000 halt

multiply. toy

10:
alil 2
12:
aLge
14:
15:
16:
17:
14:
gz
16:
N7
14:
L5z
16:
i)z
14:
18:
il)e

8A0A
8BOB
8CcoOD
810E

1ccB
2an1
Cc014

iccB
2aA1
c014

1CCB
2an1
c014

9coc
0000

RA < mem[0A]

RB < mem[OB]

RC < mem[0D]

Rl < mem[OE]

if (RA == 0) pc < 18
RC < RC + RB

RA < RA - R1

pc < 14

if (RA

RC < RC + RB

RA < RA - R1
pc < 14

== 0) pc < 18
RC < RC + RB

RA < RA - R1

if (RA

pc < 14

if (RA == 0) pc < 18
mem[0C] < RC

halt

== 0) pc < 18

Step-By-Step Trace

multiply.toy

Basic Characteristics of TOY Machine

TOY is a general-purpose computer.

= Sufficient power to perform any computation.

= Limited only by amount of memory and time.

Stored-program computer. [von Neumann memo, 1944]

* Data and program encoded in binary.

= Data and program stored in same memory.

* Can change program without rewiring.

Outgrowth of Alan Turing's work. (stay funed)

All modern computers are general-purpose computers

and have same (von Neumann) architecture.

Maurice Wilkes (left)

EDSAC (right)

A Little History

Electronic Numerical Integrator and Calculator (ENIAC).

= First widely known general purpose electronic computer.

= Conditional jumps, programmable.
* Programming: change switches and cable connections.

= Data: enter numbers using punch cards.

AN

30 tons

30 x50 x 8.5 ft+
17,468 vacuum tubes
300 multiply/sec

John Mauchly (left) and J. Presper Eckert (right)
http://cs.swau.edu/~durkin/articles/history_computing.html

Harvard vs. Princeton

Harvard architecture.

* Separate program and data memories.

* Can't load game from disk (data) and execute (program).

= Used in some microcontrollers.

Von Neumann architecture.
* Program and data stored in same memory.

= Used in almost all computers.

Q. What's the difference between Harvard and Princeton?

A. At Princeton, data and programs are the same.

ENIAC, Ester Gerston (left), Gloria Gordon (right)
US Army photo: http://ftp.arl.mil/ftp/historic-computers

/v
£l
H
;S‘
&

5_!-’

