
4.1 Performance

2

Running Time

Charles Babbage (1864)

“As soon as an Analytic Engine exists, it will necessarily
 guide the future course of the science. Whenever any result
 is sought by its aid, the question will arise - By what course
 of calculation can these results be arrived at by the machine
 in the shortest time?” – Charles Babbage

Analytic Engine

how many times do you
have to turn the crank?

3

The Challenge

Will my program be able to solve a large practical problem?

Key insight (Knuth 1970s):
 Use the scientific method to understand performance.

compile debug
on test cases

solve problems
in practice

4

Scientific Method

Scientific method.
•Observe some feature of the natural world.

•Hypothesize a model that is consistent with the observations.
• Predict events using the hypothesis.
• Verify the predictions by making further observations.

• Validate by repeating until the hypothesis and observations agree.

Principles.
• Experiments must be reproducible;

•Hypotheses must be falsifiable.

Reasons to Analyze Algorithms

Predict performance
•Will my program finish?

•When will my program finish?

Compare algorithms

•Will this change make my program faster?
•How can I make my program faster?

Basis for inventing new ways to solve problems

• Enables new technology
• Enables new research

5 6

Algorithmic Successes

Discrete Fourier transform.
• Break down waveform of N samples into periodic components.

•Applications: DVD, JPEG, MRI, astrophysics, ….
• Brute force: N2 steps.
• FFT algorithm: N log N steps, enables new technology.

Freidrich Gauss
1805

7

Algorithmic Successes

N-body Simulation.
• Simulate gravitational interactions among N bodies.

• Brute force: N2 steps.
• Barnes-Hut: N log N steps, enables new research.

Andrew Appel
PU '81

8

Example: Three-Sum Problem

Three-sum problem. Given N integers, find triples that sum to 0.
Context. Deeply related to problems in computational geometry.

Q. How would you write a program to solve the problem?

% more 8ints.txt
30 -30 -20 -10 40 0 10 5

% java ThreeSum < 8ints.txt
 4
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

9

Three-Sum

public class ThreeSum
{
 // Return number of distinct triples (i, j, k)
 // such that (a[i] + a[j] + a[k] == 0)
 public static int count(int[] a) {
 int N = a.length;
 int cnt = 0;
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0) cnt++;
 return cnt;
 }

 public static void main(String[] args) {
 int[] a = StdArrayIO.readInt1D();
 StdOut.println(count(a));
 }
}

all possible triplets
i < j < k

Empirical Analysis

11

17.184096

2.162048

0.261024

0.03512

time †N

136.768192

Empirical Analysis

Empirical analysis. Run the program for various input sizes.

† Running Linux on Sun-Fire-X4100 with 16GB RAM

12

Stopwatch

Q. How to time a program?
A. A stopwatch.

13

Stopwatch

Q. How to time a program?
A. A Stopwatch object.

public class Stopwatch
{
 private final long start;

 public Stopwatch()
 {
 start = System.currentTimeMillis();
 }

 public double elapsedTime()
 {
 return (System.currentTimeMillis() - start) / 1000.0;
 }
}

14

Stopwatch

Q. How to time a program?
A. A Stopwatch object.

public static void main(String[] args)
{
 int[] a = StdArrayIO.readInt1D();
 Stopwatch timer = new Stopwatch();
 StdOut.println(count(a));
 StdOut.println(timer.elapsedTime());
}

15

Data analysis. Plot running time vs. input size N.

Q. How does running time grow as a function of input size N ?

Empirical Analysis

16

Data analysis. Plot running time vs. input size N on a log-log scale.

Initial hypothesis: Running time satisfies a power law
 f(N) = a N b

On log-log scale,
 lg (F(N) = b lg N + a

Estimate slope by fitting line through data points.

Refined hypothesis. Running time grows as the cube of the input size: a N3.

Empirical Analysis

slope

slope = 3

17

7.9617.184096

8.432.162048

7.880.261024

-0.033512

7.96

ratiotime †N

136.768192

Doubling Hypothesis

Doubling hypothesis. Quick way to estimate b in a power law hypothesis.

Run program, doubling the size of the input.

Seems to converge to a constant c0?

Hypothesize that running time is about a N b with b = lg c0

a (2N)b
a (N)b

= 2b

Doubling Challenge 1

Let F(N) be the running time of program Mystery for input N.

Observation: F(2N)/F(N) is about 4.

What is the order of growth of the running time?

18

public static Mystery
{
 ...
 int N = Integer.parseInt(args[0]);
 ...
}

Doubling Challenge 1

Let F(N) be the running time of program Mystery for input N.

Observation: F(2N)/F(N) is about 4.

What is the order of growth of the running time?

19

public static Mystery
{
 ...
 int N = Integer.parseInt(args[0]);
 ...
}

A. Quadratic: a N2
a (2N)2
a (N)2

= 4

Doubling Challenge 2

Let F(N) be the running time of program Mystery for input N.

Observation: F(2N)/F(N) is about 2.

What is the order of growth of the running time?

20

public static Mystery
{
 ...
 int N = Integer.parseInt(args[0]);
 ...
}

Doubling Challenge 2

Let F(N) be the running time of program Mystery for input N.

Observation: F(2N)/F(N) is about 2.

What is the order of growth of the running time?

21

public static Mystery
{
 ...
 int N = Integer.parseInt(args[0]);
 ...
}

A. Linear: a N

Could be a N lg N

a (2N)
a (N)

= 2

a (2N) lg (2N)
a N lg N

= 2 +
2 lg 2
lg N

22

Prediction and Validation

Hypothesis. Running time is about a N3 seconds for input of size N.

Q. How to estimate a ?

A. Run the program!

Refined hypothesis. Running time is about 1.25 ! 10-10 N3 seconds.

Prediction. 1100 seconds for N = 16,384.

Observation.

17.174096

17.154096

17.184096

time †N

1118.8616384

time †N

17.17 = a 4096 3

a = 17.17 / 4096 3
 = 1.25 ! 10-10

validates hypothesis!

† Running Linux on Sun-Fire-X4100 with 16GB RAM

Mathematical Analysis

Donald Knuth
Turing award '74

24

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and
weight by its execution time.

int count = 0;
for (int i = 0; i < N; i++)
 if (a[i] == 0) count++;

Nequal to comparison

N + 1less than comparison

2variable assignment

2variable declaration

frequencyoperation

Narray access

between N (no zeros)
and 2N (all zeros)

! 2 Nincrement

25

int count = 0;
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0) count++;

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and
weight by its execution time.

becoming very tedious to count1/2 N (N – 1)equal to comparison

1/2 (N + 1) (N + 2)less than comparison

N + 2variable assignment

N + 2variable declaration

frequencyoperation

N (N – 1)array access

! N 2increment

!

0 + 1 + 2 + ... + (N "1) = 1/2 N(N "1)

26

Tilde Notation

Tilde notation.
• Estimate running time as a function of input size N.

• Ignore lower order terms.
– when N is large, terms are negligible
– when N is small, we don't care

Ex 1. 6 N 3 + 17 N 2 + 56 ~ 6 N 3

Ex 2. 6 N 3 + 100 N 4/3 + 56 ~ 6 N 3

Ex 3. 6 N 3 + 17 N 2 log N ~ 6 N 3

Technical definition. f(N) ~ g(N) means

!

lim
N" #

 f (N)
g(N)

 = 1

discard lower-order terms
(e.g., N = 1000: 6 trillion vs. 169 million)

27

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and
weight by its execution time.

Inner loop. Focus on instructions in "inner loop."

28

Constants in Power Law

Power law. Running time of a typical program is ~ a N b.

Exponent b depends on: algorithm.

Constant a depends on:

• algorithm
• input data
• caching
•machine

• compiler
• garbage collection
• just-in-time compilation

• CPU use by other applications

Our approach. Use doubling hypothesis (or mathematical analysis) to
estimate exponent b, run experiments to estimate a.

system dependent effects

system independent effects

29

Analysis: Empirical vs. Mathematical

Empirical analysis.
•Measure running times, plot, and fit curve.

• Easy to perform experiments.
•Model useful for predicting, but not for explaining.

Mathematical analysis.
• Analyze algorithm to estimate # ops as a function of input size.
•May require advanced mathematics.

•Model useful for predicting and explaining.

Critical difference. Mathematical analysis is independent of a particular
machine or compiler; applies to machines not yet built.

30

Order of Growth Classifications

Observation. A small subset of mathematical functions suffice to describe
running time of many fundamental algorithms.

for (int i = 0; i < N; i++)
 ...

N

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 ...

N2

while (N > 1) {
 N = N / 2;
 ...
}

lg N

public static void f(int N) {
 if (N == 0) return;
 f(N-1);
 f(N-1);
 ...
}

2N

public static void g(int N) {
 if (N == 0) return;
 g(N/2);
 g(N/2);
 for (int i = 0; i < N; i++)
 ...
}

N lg N

lg N = log2 N

31

Order of Growth Classifications

32

Order of Growth: Consequences

Dynamic Programming

34

Binomial Coefficients

Binomial coefficient. number of ways to choose k of n elements.

Pascal's identity.!

n
k

"

$

%

&
' =

!

n
k

"

$

%

&
' =

n(1
k (1

"

$

%

&
' +

n(1
k

"

$

%

&
'

contains
first element

excludes
first element

35

Binomial Coefficients: Sierpinski Triangle

Binomial coefficient. number of ways to choose k of n elements.

Sierpinski triangle. Color black the odd integers in Pascal's triangle.!

n
k

"

$

%

&
' =

36

Binomial coefficient. number of ways to choose k of n elements.

Probability of "quads" in Texas hold 'em:

Probability of 6-4-2-1 split in bridge:

Binomial Coefficients: Poker Odds

!

n
k

"

$

%

&
' =

!

13
1
"

$

%

&
' (

48
3

"

$

%

&
'

52
7

"

$

%

&
'

 = 224,848
133,784,560

 (about 594 : 1)

!

4
1
"

$
%

&
' (

13
6

"

$

%

&
' (

3
1
"

$
%

&
' (

13
4

"

$

%

&
' (

2
1
"

$
%

&
' (

13
2

"

$

%

&
' (

1
1
"

$
%

&
' (

13
1
"

$

%

&
'

52
13
"

$

%

&
'

!

 = 29,858,811,840
635,013,559,600

 (about 21 : 1)

37

Binomial Coefficients: First Attempt

public class SlowBinomial
{
 // Natural recursive implementation
 public static long binomial(long n, long k)
 {
 if (k == 0) return 1;
 if (n == 0) return 0;
 return binomial(n-1, k-1) + binomial(n-1, k);
 }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 int K = Integer.parseInt(args[1]);
 StdOut.println(binomial(N, K));
 }

}

Performance Challenge 3

Is this an efficient way to compute binomial coefficients?

38

 public static long binomial(long n, long k)
 {
 if (k == 0) return 1;
 if (n == 0) return 0;
 return binomial(n-1, k-1) + binomial(n-1, k);
 }

Performance Challenge 3

Is this an efficient way to compute binomial coefficients?

39

 public static long binomial(long n, long k)
 {
 if (k == 0) return 1;
 if (n == 0) return 0;
 return binomial(n-1, k-1) + binomial(n-1, k);
 }

A. NO, NO, NO: same essential recomputation problem as naive Fibonacci.

(50, 25)

(49, 24) (49, 25)

(48, 23)

(47, 22) (47, 23)

(48, 24)

(47, 23)(47, 24)

(48, 25)

(47, 24) (47, 25)

(48, 24)

(47, 23) (47, 24)

recursion tree for naïve binomial function

40

Timing experiments: direct recursive solution.

Q. Is running time linear, quadratic, cubic, exponential in n?

Timing Experiments

15.69(32, 16)

4.30(30, 15)

1.27(28, 14)

0.46(26, 13)

time †(2n, n)

57.40(34, 17)

† Running Linux on Sun-Fire-X4100 with 16GB RAM

230.42(36, 18)

increase n by 1, running time
increases by about 4x

Performance Challenge 4

Let F(N) be the time to compute binomial(2N, N) using the naive algorithm.

Observation: F(N+1)/F(N) is about 4.

What is the order of growth of the running time?

41

 public static long binomial(long n, long k)
 {
 if (k == 0) return 1;
 if (n == 0) return 0;
 return binomial(n-1, k-1) + binomial(n-1, k);
 }

Performance Challenge 4

Let F(N) be the time to compute binomial(2N, N) using the naive algorithm.

Observation: F(N+1)/F(N) is about 4.

What is the order of growth of the running time?

42

 public static long binomial(long n, long k)
 {
 if (k == 0) return 1;
 if (n == 0) return 0;
 return binomial(n-1, k-1) + binomial(n-1, k);
 }

A. EXPONENTIAL: a 4N

Will not finish unless N is small.

43

Key idea. Save solutions to subproblems to avoid recomputation.

Tradeoff. Trade (a little) memory for (a huge amount of) time.

Dynamic Programming

0 1 2 3 4

0 1 0 0 0 0

1 1 1 0 0

2 1 2 1 0 0

3 1 3 3 1 0

4 1 4 6 4 1

5 1 5 10 10 5

6 1 6 15 20 15

0

n

k

binomial(n, k) !

n
k

"

$

%

&
' =

n(1
k (1

"

$

%

&
' +

n(1
k

"

$

%

&
'

20 = 10 + 10

44

Binomial Coefficients: Dynamic Programming

public class Binomial
{
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 int K = Integer.parseInt(args[1]);
 long[][] bin = new long[N+1][K+1];

 // base cases
 for (int k = 1; k <= K; k++) bin[0][K] = 0;
 for (int n = 0; n <= N; n++) bin[N][0] = 1;

 // bottom-up dynamic programming
 for (int n = 1; n <= N; n++)
 for (int k = 1; k <= K; k++)
 bin[n][k] = bin[n-1][k-1] + bin[n-1][k];

 // print results
 StdOut.println(bin[N][K]);
 }
}

45

Timing experiments for binomial coefficients with dynamic programming.

Timing Experiments

instant(32, 16)

instant(30, 15)

instant(28, 14)

instant(26, 13)

time †(2n, n)

instant(34, 17)

† Running Linux on Sun-Fire-X4100 with 16GB RAM

instant(36, 18)

Performance Challenge 5

Let F(N) be the time to compute binomial(2N, N) using dynamic programming.

What is the order of growth of the running time?

46

 for (int n = 1; n <= 2*N; n++)
 for (int k = 1; k <= N; k++)
 bin[n][k] = bin[n-1][k-1] + bin[n-1][k];

Performance Challenge 5

Let F(N) be the time to compute binomial(2N, N) using dynamic programming.

What is the order of growth of the running time?

47

 for (int n = 1; n <= 2*N; n++)
 for (int k = 1; k <= N; k++)
 bin[n][k] = bin[n-1][k-1] + bin[n-1][k];

A. Quadratic: a N2

Effectively instantaneous for small N.

Key point: There is PROFOUND DIFFERENCE between 4N and N2

cannot solve
a large problem

can solve
a large problem

48

Stirling's Approximation

An alternative approach:

Doesn’t work: 52! overflows a long, even though final result doesn't.

Instead of computing exact values, use Stirling's approximation:

Application. Probability of exact k heads in n flips with a biased coin.

Easy to compute approximate value with Stirling’s formula

:

!

ln n! " n ln n # n + ln(2$ n)
2

 + 1
12n

 # 1
360n3 + 1

1260n5

!

n
k

"

$

%

&
' = n!

n! (n(k)!

!

n
k

"

$

%

&
' p

k (1(p)n(k

Memory

50

Typical Memory Requirements for Java Data Types

Bit. 0 or 1.
Byte. 8 bits.
Megabyte (MB). 210 bytes ~ 1 million bytes.
Gigabyte (GB). 220 bytes ~ 1 billion bytes.

Q. What's the biggest double array you can store on your computer?

typical computer '08 has about 1GB memory

Performance Challenge 6

How much memory does this program use (as a function of N)?

51

public class RandomWalk
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 int[][] count = new int[N][N];
 int x = N/2;
 int y = N/2;

 for (int i = 0; i < N; i++) {
 // no new variable declared in loop
 ...
 count[x][y]++;
 }
 }
}

Performance Challenge 6

How much memory does this program use (as a function of N)?

52

public class RandomWalk
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 int[][] count = new int[N][N];
 int x = N/2;
 int y = N/2;

 for (int i = 0; i < N; i++) {
 // no new variable declared in loop
 ...
 count[x][y]++;
 }
 }
}

A. ∼ 4 N2 bytes.

53

Summary

Q. How can I evaluate the performance of my program?
A. Computational experiments, mathematical analysis, scientific method

Q. What if it's not fast enough? Not enough memory?
•Understand why.

• Buy a faster computer.
• Learn a better algorithm (COS 226, COS 423).
• Discover a new algorithm.

does not apply to
some problems

makes "everything"
run fasterapplicability

dramatic qualitative
improvements possible

$ or less.

better algorithmbetter machineattribute

$$$ or more.cost

quantitative improvementsimprovement

