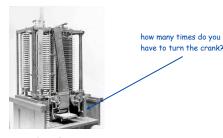
Running Time

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time?" – Charles Babbage



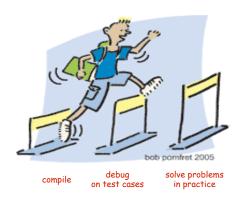
Analytic Engine

The Challenge

4.1 Performance

Programming

Robert Sedgewick • Kevin Wayne



Will my program be able to solve a large practical problem?

Key insight (Knuth 1970s):

Use the scientific method to understand performance.

Scientific Method

Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible;
- Hypotheses must be falsifiable.

Reasons to Analyze Algorithms

Predict performance

- Will my program finish?
- When will my program finish?

Compare algorithms

- Will this change make my program faster?
- How can I make my program faster?

Basis for inventing new ways to solve problems

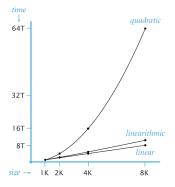
- Enables new technology
- Enables new research

Algorithmic Successes

N-body Simulation.

- Simulate gravitational interactions among N bodies.
- \bullet Brute force: N^2 steps.
- Barnes-Hut: N log N steps, enables new research.

Andrew Appe PU '81

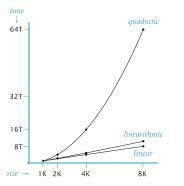


Algorithmic Successes

Discrete Fourier transform.

- Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N² steps.
- FFT algorithm: N log N steps, enables new technology.

Freidrich Gaus 1805



Example: Three-Sum Problem

Three-sum problem. Given N integers, find triples that sum to 0. Context. Deeply related to problems in computational geometry.

Q. How would you write a program to solve the problem?

Three-Sum

```
public class ThreeSum
   // Return number of distinct triples (i, j, k)
          such that (a[i] + a[j] + a[k] == 0)
  public static int count(int[] a) {
     int N = a.length;
      int cnt = 0;
      for (int i = 0; i < N; i++)
                                               all possible triplets
         for (int j = i+1; j < N; j++)
                                                 i < j < k
            for (int k = j+1; k < N; k++)
               if (a[i] + a[j] + a[k] == 0) cnt++;
      return cnt;
   public static void main(String[] args) {
      int[] a = StdArrayIO.readInt1D();
      StdOut.println(count(a));
```

Empirical Analysis

Empirical analysis. Run the program for various input sizes.

N	time †
512	0.03
1024	0.26
2048	2.16
4096	17.18
8192	136.76

† Running Linux on Sun-Fire-X4100 with 16GB RAM

Empirical Analysis

Stopwatch

- Q. How to time a program?
- A. A stopwatch.

2 391930676 -763182495 371251819 -326747290 802431422 -475684132

Stopwatch

- Q. How to time a program?
- A. A Stopwatch object.

```
public class Stopwatch
```

Stopwatch()
double elapsedTime()

create a new stopwatch and start it running

return the elapsed time since creation, in seconds

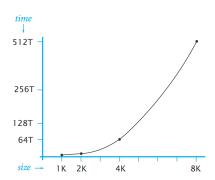
```
public class Stopwatch
{
    private final long start;

    public Stopwatch()
    {
        start = System.currentTimeMillis();
    }

    public double elapsedTime()
    {
        return (System.currentTimeMillis() - start) / 1000.0;
    }
}
```

Empirical Analysis

Data analysis. Plot running time vs. input size N.



 ${\bf Q}.$ How does running time grow as a function of input size N ?

Stopwatch

- Q. How to time a program?
- A. A Stopwatch object.

```
public class Stopwatch
```

Stopwatch()
double elapsedTime()

create a new stopwatch and start it running

return the elapsed time since creation, in seconds

```
public static void main(String[] args)
{
   int[] a = StdArrayIO.readIntlD();
   Stopwatch timer = new Stopwatch();
   StdOut.println(count(a));
   StdOut.println(timer.elapsedTime());
}
```

Empirical Analysis

Data analysis. Plot running time vs. input size N on a log-log scale.

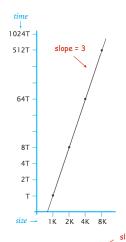
Initial hypothesis: Running time satisfies a power law

$$f(N) = a N^b$$

On log-log scale,

$$\lg (F(N) = b \lg N + a$$

Estimate slope by fitting line through data points.



Refined hypothesis. Running time grows as the cube of the input size: a N³.

Doubling Hypothesis

Doubling Challenge 1

Doubling hypothesis. Quick way to estimate b in a power law hypothesis.

Run program, doubling the size of the input.

N	time †	ratio
512	0.033	-
1024	0.26	7.88
2048	2.16	8.43
4096	17.18	7.96
8192	136.76	7.96

$$\frac{a (2N)^b}{a (N)^b} = 2^b$$

Seems to converge to a constant c_0 ?

Hypothesize that running time is about a N^b with $b = \lg c_0$

17

Doubling Challenge 1

Let F(N) be the running time of program Mystery for input N.

```
public static Mystery
{
    ...
    int N = Integer.parseInt(args[0]);
    ...
}
```

Observation: F(2N)/F(N) is about 4.

What is the order of growth of the running time?

A. Quadratic: a N²
$$\frac{a (2N)^2}{a (N)^2} =$$

Let F(N) be the running time of program Mystery for input N.

```
public static Mystery
{
    ...
    int N = Integer.parseInt(args[0]);
    ...
}
```

Observation: F(2N)/F(N) is about 4.

What is the order of growth of the running time?

Doubling Challenge 2

Let F(N) be the running time of program Mystery for input N.

```
public static Mystery
{
    ...
    int N = Integer.parseInt(args[0]);
    ...
}
```

Observation: F(2N)/F(N) is about 2.

What is the order of growth of the running time?

19

Doubling Challenge 2

Let F(N) be the running time of program Mystery for input N.

```
public static Mystery
{
    ...
    int N = Integer.parseInt(args[0]);
    ...
}
```

Observation: F(2N)/F(N) is about 2.

What is the order of growth of the running time?

A. Linear: a N
$$\frac{a(2N)}{a(N)} = 2$$

Could be a N Ig N
$$\frac{a(2N) \lg (2N)}{a N \lg N} = 2 + \frac{2 \lg 2}{\lg N}$$

Mathematical Analysis

Donald Knuth Turing award '74

Prediction and Validation

Hypothesis. Running time is about a N^3 seconds for input of size N.

Q. How to estimate a?

A. Run the program!

N	time †	
4096	17.18	17.17 = a 4096 ³ a = 17.17 / 4096 ³
4096	17.15	$a = 17.17 / 4096^{\circ}$ $= 1.25 \times 10^{-10}$
4096	17.17	= 1,20 % 10

† Running Linux on Sun-Fire-X4100 with 16GB RAM

Refined hypothesis. Running time is about $1.25 \times 10^{-10} \text{ N}^3$ seconds.

Prediction. 1100 seconds for N = 16,384.

Observation.	N	time †	
	16384	1118.86	validates hypothesis!

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```
int count = 0;
for (int i = 0; i < N; i++)
   if (a[i] == 0) count++;</pre>
```

operation	frequency	
variable declaration	2	
variable assignment	2	
less than comparison	N+1	
equal to comparison	N	between N (no zeros) and 2N (all zeros)
array access	N	
increment	≤ 2 N	

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
    if (a[i] + a[j] == 0) count++;</pre>
```

operation	frequency	
variable declaration	N + 2	$0 + 1 + 2 + \dots + (N-1) = 1/2 \ N(N-1)$
variable assignment	N + 2	
less than comparison	1/2 (N+1) (N+2)	
equal to comparison	1/2 N (N-1)	becoming very tedious to count
array access	N(N-1)	
increment	≤ N ²	
		25

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

Inner loop. Focus on instructions in "inner loop."

Tilde Notation

Tilde notation.

- \bullet Estimate running time as a function of input size N.
- Ignore lower order terms.
 - when N is large, terms are negligible
 - -when N is small, we don't care

Ex 1.
$$6N^3 + 17N^2 + 56$$
 $\sim 6N^3$
Ex 2. $6N^3 + 100N^{4/3} + 56$ $\sim 6N^3$
Ex 3. $6N^3 + 17N^2 \log N \sim 6N^3$

discard lower-order terms
(e.g., N = 1000: 6 trillion vs. 169 million)

Technical definition.
$$f(N) \sim g(N)$$
 means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$

Constants in Power Law

Power law. Running time of a typical program is $\sim a N^b$.

Exponent b depends on: algorithm.

Constant a depends on:

Our approach. Use doubling hypothesis (or mathematical analysis) to estimate exponent b, run experiments to estimate a.

Analysis: Empirical vs. Mathematical

Empirical analysis.

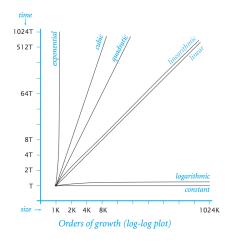
- Measure running times, plot, and fit curve.
- Easy to perform experiments.
- Model useful for predicting, but not for explaining.

Mathematical analysis.

- Analyze algorithm to estimate # ops as a function of input size.
- May require advanced mathematics.
- Model useful for predicting and explaining.

Critical difference. Mathematical analysis is independent of a particular machine or compiler; applies to machines not yet built.

Order of Growth Classifications



order of growth		factor for	
description	function	factor for doubling hypothesis	
constant	1	1	
logarithmic	$\log N$	1	
linear	N	2	
linearithmic	$N \log N$	2	
quadratic	N^2	4	
cubic	N^3	8	
exponential	2^N	2 N	

29

Order of Growth Classifications

Observation. A small subset of mathematical functions suffice to describe running time of many fundamental algorithms.

```
while (N > 1) {
                                           public static void g(int N) {
   N = N / 2;
                                              if (N == 0) return;
                                              g(N/2);
                                              g(N/2);
                                               for (int i = 0; i < N; i++)
     lg N
                                                          N \lg N
for (int i = 0; i < N; i++)
                                           public static void f(int N) {
                                              if (N == 0) return;
                                              f(N-1);
                                              f(N-1);
for (int i = 0; i < N; i++)
  for (int j = 0; j < N; j++)
      N^2
                                                            2^N
```

Order of Growth: Consequences

order of growth	predicted running time if problem size is increased by a factor of 100
linear	a few minutes
linearithmic	a few minutes
quadratic	several hours
cubic	a few weeks
exponential	forever
	creasing problem size hat runs for a few seconds

order of growth	predicted factor of problem size increase if computer speed is increased by a factor of 10	
linear	10	
linearithmic	10	
quadratic	3-4	
cubic	2-3	
exponential	1	

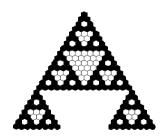
Effect of increasing computer speed on problem size that can be solved in a fixed amount of time

Dynamic Programming

Binomial Coefficients: Sierpinski Triangle

Binomial coefficient. $\binom{n}{k}$ = number of ways to choose k of n elements.

Sierpinski triangle. Color black the odd integers in Pascal's triangle.

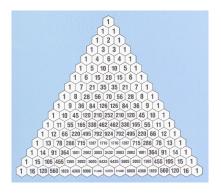


Binomial Coefficients

Binomial coefficient. $\binom{n}{k}$ = number of ways to choose k of n elements.

Pascal's identity.

$$\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n-1 \\ k-1 \end{pmatrix} + \begin{pmatrix} n-1 \\ k \end{pmatrix}$$
contains excludes



34

Binomial Coefficients: Poker Odds

Binomial coefficient. $\binom{n}{k}$ = number of ways to choose k of n elements.

Probability of "quads" in Texas hold 'em:

$$\frac{\binom{13}{1} \times \binom{48}{3}}{\binom{52}{7}} = \frac{224,848}{133,784,560} \quad (about 594:1)$$

Probability of 6-4-2-1 split in bridge:

$$\frac{\binom{4}{1} \times \binom{13}{6} \times \binom{3}{1} \times \binom{13}{4} \times \binom{2}{1} \times \binom{13}{2} \times \binom{1}{1} \times \binom{13}{1}}{\binom{52}{13}}$$

$$= \frac{29,858,811,840}{635,013,559,600} \quad (about 21:1)$$

3 8 0 0 0 1 4 2 0 4 1 0 7 7 8 3

Binomial Coefficients: First Attempt

```
public class SlowBinomial
{
    // Natural recursive implementation
    public static long binomial(long n, long k)
    {
        if (k == 0) return 1;
        if (n == 0) return 0;
        return binomial(n-1, k-1) + binomial(n-1, k);
    }

    public static void main(String[] args)
    {
        int N = Integer.parseInt(args[0]);
        int K = Integer.parseInt(args[1]);
        StdOut.println(binomial(N, K));
    }
}
```

Performance Challenge 3

Is this an efficient way to compute binomial coefficients?

```
public static long binomial(long n, long k)
{
   if (k == 0) return 1;
   if (n == 0) return 0;
   return binomial(n-1, k-1) + binomial(n-1, k);
}
```

A. NO, NO, NO: same essential recomputation problem as naive Fibonacci.

```
(49, 24) (48, 25) (48, 24) (48, 25) (47, 22) (47, 23) (47, 24) (47, 23) (47, 24) (47, 24) (47, 25) (47, 22) (47, 23) (47, 24) (47, 26) (48, 25)
```

39

Performance Challenge 3

Is this an efficient way to compute binomial coefficients?

```
public static long binomial(long n, long k)
{
   if (k == 0) return 1;
   if (n == 0) return 0;
   return binomial(n-1, k-1) + binomial(n-1, k);
}
```

37

Timing Experiments

Timing experiments: direct recursive solution.

(2 <i>n</i> , <i>n</i>)	time †	
(26, 13)	0.46	
(28, 14)	1.27	
(30, 15)	4.30	
(32, 16)	15.69	increase n by 1, running time increases by about 4x
(34, 17)	57.40	
(36, 18)	230.42	J

† Running Linux on Sun-Fire-X4100 with 16GB RAM

Q. Is running time linear, quadratic, cubic, exponential in n?

Performance Challenge 4

1.45

Let F(N) be the time to compute binomial (2N, N) using the naive algorithm.

```
public static long binomial(long n, long k)
{
   if (k == 0) return 1;
   if (n == 0) return 0;
   return binomial(n-1, k-1) + binomial(n-1, k);
}
```

Observation: F(N+1)/F(N) is about 4.

What is the order of growth of the running time?

Dynamic Programming

Key idea. Save solutions to subproblems to avoid recomputation.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Tradeoff. Trade (a little) memory for (a huge amount of) time.

Let F(N) be the time to compute binomial (2N, N) using the naive algorithm.

Performance Challenge 4

```
public static long binomial(long n, long k)
{
   if (k == 0) return 1;
   if (n == 0) return 0;
   return binomial(n-1, k-1) + binomial(n-1, k);
}
```

Observation: F(N+1)/F(N) is about 4.

What is the order of growth of the running time?

A. EXPONENTIAL: a 4N

Will not finish unless N is small.

Binomial Coefficients: Dynamic Programming

Timing Experiments

Timing experiments for binomial coefficients with dynamic programming.

(2 <i>n</i> , <i>n</i>)	time †
(26, 13)	instant
(28, 14)	instant
(30, 15)	instant
(32, 16)	instant
(34, 17)	instant
(36, 18)	instant

† Running Linux on Sun-Fire-X4100 with 16GB RAM

Performance Challenge 5

45

Let F(N) be the time to compute binomial(2N, N) using dynamic programming.

What is the order of growth of the running time?

A. Quadratic: a N²

Effectively instantaneous for small N.

Key point: There is PROFOUND DIFFERENCE between 4N and N²

cannot solve
a large problem

can solve
a large problem

Performance Challenge 5

Let F(N) be the time to compute binomial(2N, N) using dynamic programming.

What is the order of growth of the running time?

Stirling's Approximation

An alternative approach: $\binom{n}{k} = \frac{n!}{n! (n-k)!}$

Doesn't work: 52! overflows a long, even though final result doesn't.

Instead of computing exact values, use Stirling's approximation:

$$\ln n! \approx n \ln n - n + \frac{\ln(2\pi n)}{2} + \frac{1}{12n} - \frac{1}{360n^3} + \frac{1}{1260n^5}$$

Application. Probability of exact k heads in n flips with a biased coin.

$$\begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k}$$

Easy to compute approximate value with Stirling's formula

Memory

Performance Challenge 6

How much memory does this program use (as a function of N)?

Typical Memory Requirements for Java Data Types

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 2¹⁰ bytes ~ 1 million bytes.

Gigabyte (GB). 2²⁰ bytes ~ 1 billion bytes.

type	bytes	type	bytes
boolean	1	int[]	4N + 16
byte	1	double[]	8N + 16
char	2	int[][]	$4N^2 + 20N + 16$
int	4	double[][]	$8N^2 + 20N + 16$
float	4	String	2N + 40
long	8		
double	8		

typical computer '08 has about 1GB memory

Q. What's the biggest double array you can store on your computer?

50

Performance Challenge 6

How much memory does this program use (as a function of N)?

A. $\sim 4 N^2$ bytes.

Summary

- Q. How can I evaluate the performance of my program?
- A. Computational experiments, mathematical analysis, scientific method
- Q. What if it's not fast enough? Not enough memory?
- Understand why.
- Buy a faster computer.
- Learn a better algorithm (COS 226, COS 423).
- Discover a new algorithm.

attribute	better machine	better algorithm
cost	\$\$\$ or more.	\$ or less.
applicability	makes "everything" run faster	does not apply to some problems
improvement	quantitative improvements	dramatic qualitative improvements possible