
Software: how we tell the machine what to do
• hardware is a general purpose machine

– capable of doing instructions repetitively and very fast
– doesn't do anything itself unless we tell it what to do

• software: the instructions we want it to do
– different set of instructions

-> different program
-> machine behaves differently

– program and data are stored in the same memory and
manipulated by the same instructions

• to tell a machine what to do,
– we have to spell out the steps in excruciating detail
– programming languages help handle a lot of the details

Software roadmap

• algorithm
– precise but abstract description of how to do some task

• program
– precise concrete description of how to do some task on a real computer

• programming languages
– precise notations for describing how to do tasks on a computer

e.g., Toy, Javascript
• real programs (big software)

– operating systems
file systems, databases

– applications

• social / political / economic / legal issues
– interfaces
– open source software
– intellectual property, patents, copyrights

xkcd.com/627

Algorithms

• an algorithm is the computer science version of a
really careful, precise, unambiguous recipe or procedure

• a sequence of steps that performs some computation

• each step is expressed in terms of basic operations whose
meaning is completely specified
– basic operations or "primitive operations" are given

e.g., arithmetic operations
• all possible situations are covered

– the algorithm never gets to a situation where it doesn't know what
to do next

• guaranteed to stop
– does not run forever

Some sample algorithms

• compute average of two numbers
average = (first number + second number) / 2

• compute average of N numbers
sum = 0
for each number (from 1 to N)

add ith number to sum
average = sum / N

• convert decimal to binary
divide number by 2, write down remainder
repeat until quotient becomes zero

• many algorithms have this form:
– set up initial conditions (get started, get data to work on, ...)
– repeat until some criterion is satisfied
– finish the job

Linear time algorithms

• lots of algorithms have this same basic form:

look at each item in turn
do the same simple computation on each item:

does it match something (looking up a name in a list of names)
count it (how many items are in the list)
count it if it meets some criterion (how many of some kind in the list)
remember some property of items found (largest, smallest, …)
transform it in some way (limit size, convert case of letters, …)

• amount of work (running time) is proportional to amount of data
– twice as many items will take twice as long to process
– computation time is linearly proportional to length of input

Log n algorithms

• how do we find a name in a phone book?
– linear search requires looking at all the names

• if the names are sorted into alphabetical order,
we can use binary search, which is much faster than linear
– an example of a "divide and conquer" algorithm

• data has to be sorted
– have to be able to access any data item equally quickly
– "random access"

• why is binary search faster than linear searching?
– each test / comparison cuts the number of things to search in half

• how much faster is it?
– the number of comparison is approximately log2 n for n items

Logarithms for COS 109

• all logs in 109 are base 2
• all logs in 109 are integers

• if N is a power of 2 like 2m, log2 of N is m
• if N is not a power of 2, log2 of N is

the number of bits needed to represent N
the power of 2 that's bigger than N
the number of times you can divide N by 2 before it becomes 0

• you don't need a calculator for these!
– just figure out how many bits or what's the right power of 2

• logs are related to exponentials: log2 2N is N

• it's the same as decimal, but with 2 instead of 10

Algorithms for sorting

• binary search needs sorted data

• how do we sort names into alphabetical order?
• how do we sort numbers into increasing or decreasing order?
• how do we sort a deck of cards?

• how many operations / comparisons does sorting take?

• "selection sort":
– find the smallest/earliest

using a variant of "find the largest" algorithm
– repeat on the remaining names
– this is what bridge players typically do when organizing a hand

• what other algorithms might work?

How fast do these run?

• searching an unordered/unsorted list of names
– time is proportional to length of the list

because you might have to walk right to the end
– twice as many items takes twice as long to search

• searching a sorted list of names with binary search
– time is much faster (proportional to logarithm of length)

because you can use divide-and-conquer to narrow the search
– twice as many items needs only one more probe

• sorting n items takes time proportional to n2 with simple
sorting algorithms like selection sort
– twice as many items takes 4 times as long to sort

• there are much faster sorting algorithms (e.g., Quicksort)
– time proportional to n log n

Quicksort: an n log n sorting algorithm

• make one pass through data, putting all small items in one pile
and all large items on another pile
– there are now two piles, each with about 1/2 of the items
– and each item in the first pile is smaller than any item in the second

• make a second pass; for each pile, put all small items in one
pile and all larger items in another pile
– there are now four piles, each with about 1/4 of the items
– and each item in a pile is smaller than any item in later piles

• repeat until there are n piles
– each item is now smaller than any item in a later pile

• each pass looks at n items
• each pass divides each pile in half, stops when size is 1

– number of divisions is log n
• n log n operations

Complexity hierarchy (or part of it)

• log n logarithmic

• n linear polynomial
• n log n ..
• n2 quadratic ..
• n3 cubic ..

• 2n exponential (not polynomial)

Algorithms in Computer Science

• study and analysis of algorithms is a major component of CS
courses
– what can be done (and what can't)
– how to do it efficiently (fast, compact memory)
– finding fundamentally new and better ways to do things
– basic algorithms like searching and sorting
– plus lots of applications with specific needs

• big programs are usually a lot of simple, straightforward
parts, often intricate, occasionally clever, very rarely with a
new basic algorithm, sometimes with a new algorithm for a
specific task

Algorithms versus Programs

• An algorithm is the computer science version of a really
careful, precise, unambiguous recipe
– defined operations (primitives) whose meaning is completely known
– defined sequence of steps, with all possible situations covered
– defined condition for stopping

– an idealized recipe

• A program is an algorithm converted into a form that a
computer can process directly
– like the difference between a blueprint and a building
– has to worry about practical issues like finite memory, limited speed,

erroneous data, etc.

– a guaranteed recipe for a cooking robot

