
1

1

COS 597A:
Principles of

Database and Information Systems

Transactions
and

Concurrency Control

2

Transactions

• Unit of update/change
– Viewed as indivisible
– Database can be inconsistent during

transaction
• Add to relations with mutual foreign keys
• Constraints on values

– Debit of bank savings + credit of bank checking

– Commit transaction/ Abort transaction
• Aborts by User
• Aborts by Error

3

Consistency

• Satisfies declared integrity constraints
• Satisfies semantics of correct execution of

actions
– Example:  tuple not specified for deletion is

still there after DELETE is executed

4

Concurrency
• Must be able to execute multiple transactions on

DB together
– Multiple users

• Reservations, billing, banking, …
– Long transactions

• Reports, analysis, …
• Interleave transactions
• Each committed transaction must leave DB in

consistent state
• Each aborted transaction must leave DB in state

as if it never happened

5

ACID
Properties of transactions:
• Atomicity:  all operations of a transaction are

complete at commitment or none are
• Consistency: each transaction in isolation leaves

database in consistent state
• Isolation: each transaction “unaware” of other

transactions executing concurrently
• Durability: changes to database made by

committed transactions persist even if system
fails.

Database Management System must insure these
6

Modeling transactions

• Only reads and writes to DB tables relevant
• Consider actions READ, WRITE, COMMIT, ABORT

• How interleave these actions correctly?
– Actions of different transactions can interact

• Around these actions a transaction does
local computation: not affect DB
– Example:  comparison for query evaluation



2

7

Example
Transaction T1: debit savings; credit checking
Transaction T2: get checking balance; get savings balance

T1:  debit savings                       credit cking
T2:                          bal. chking?                       bal. savings?
                                         time

Transaction T1: debit savings; credit checking
Transaction T3: get savings balance; get checking balance

T1:  debit savings                       credit cking
T3:                          bal. saving?                       bal. chking?
                                        time

BAD

GOOD

8

Read/Write diagrams

T1:  R(V)  W(V)                     R(K)W(K)               C
T2:                     R(K)                                 R(V)       C    X
T3:                      R(V)                                 R(K)        C  √
T4:                       R(K)R(V)C                                          X

R(object):  read the DB object
W(object):  write the DB object
C: transaction commits
V represents savings account
K represents checking account

time

9

Equivalence of schedules
Two schedule are equivalent if:

For any starting state of the DB for both
schedules

The effect of executing the 1st schedule is
identical to the effect of executing the 2nd

schedule

Effect refers to the state of the DB as well as
other results (e.g. a nasty letter that you
are overdrawn)

10

Serializability
• Serial schedule: schedule for a set of

transactions that does not interleave
actions of different transactions

• A schedule is serializable if it is
equivalent to some serial schedule for
the same set of transactions

11

Conflict Serializable
• Conflicting actions by different transactions

– Read and write to same DB object
– Two writes to the same DB object

• Only non-conflicting actions to the same DB object
– Two reads

A schedule is conflict serializable if the non-
conflicting actions of the schedule can be
reordered to get a serial schedule
– Strong condition!

12

Our Examples

T1:  R(V)  W(V)                     R(K)W(K)               C
T2:                     R(K)                                 R(V)       C

T3:                      R(V)                                 R(K)       C

time

? ?

? ?



3

13

Our Examples

T1:  R(V)  W(V)                     R(K)W(K)               C
T2:                     R(K)                                 R(V)       C   X

T3:                      R(V)                                 R(K)       C  √

time

14

Precedence Graph
• Each node represents a transaction Ti

• Edge from Ti to Tk if some action of Ti precedes
and conflicts with an action of Tk

THEOREM:  A schedule is conflict serializable if
and only if  the precedence graph for the
schedule is acyclic

T1

T3

T1

T2

Example 1 Example 2

T1:W(V), T2:R(V)

T2:R(K), T1:W(K)

T1:W(V), T3:R(V)
T1:W(K), T3:R(K)

15

Locking
• Locks maintained by transaction manager
• Transaction requests lock
• Manager grants/denies lock
• Lock types:

– Shared:  need to have before read object
– Exclusive: need to have before write object

• Object locked?
– Different levels granularity

• Tables and indexes
• expense

16

Locking protocols
• Strict 2-phase locking:

– Transaction requests lock at any time before action
– Transaction releases locks when commits

• 2-phase locking (not strict)
– Transaction requests lock at any time before action
– Transaction releases locks at any time, BUT cannot

request additional locks once released any lock
• Can release before commit but must have all locks

ever need when release 1st

• Strict 2-phase locking satisfies 2-phase locking
constraints

17

Theorem

• 2 phase locking (2PL) allows only
schedule with acyclic precedents graph

=>
• 2 phase locking allows only conflict

serializable schedules

• Corollary: Strict 2-phase locking allows only
conflict serializable schedules

18

Locking for our examples
T1: S(V) R(V) X(V) W(V)                 S(K) R(K) X(K) W(K)               C
T2:                                   S(K)R(K)  ?                                R(V)       C   X

T2 can’t get S(V) until T1 releases X(V)
BUT  T1 can’t release X(V) until gets X(K)
and   T1 can’t get X(K) until T2 releases S(K)
and   T2 can’t release S(K) until gets S(V)

T1: S(V)R(V)X(V)W(V)X(K)↑L(V)              R(K) W(K)↑L(K)                  C
T3:                                                S(V)R(V)                         S(V)R(K) C    √

T1 can get X(K) in anticipation of writing K, then can release V

S(A): acquire shared lock on A            X(A): acquire exclusive lock on A
↑L(A) release all locks on A           assume ↑L(any held lock) on commit



4

19

Serializable versus conflict serializable

• Are serializable schedules that are not conflict
serializable
T1:     W(A)                         W(A)
T2:                   W(A)

Same result as
T1:                               W(A) W(A)
T2:                   W(A)

W(A) not depend on R(A) -  called blind write

• conflict serializable stricter but easy to achieve 20

View serializable
• two schedules are view equivalent

– Informally, can’t distinguish results of schedules:
• transactions read same values of each object
• last transaction to write each object same

– Formally, each of the following must occur in sched1 iff
it occurs in sched2

• the initial value of an object A is read by Ti
• Tj reads value that Tk writes
• Tf executes the final write of an object A

• A schedule is view serializable if it is view
equivalent to a serial schedule

21

Deadlock
• Transaction doesn’t get lock ⇒ waits

– transaction schedule: sequence of lock requests, lock
releases, reads & writes

• deadlock:  cycles of waiting
T1 gets exclusive lock for object A
T2 gets exclusive lock for object B
T1 requests exclusive lock for object B
T2 requests exclusive lock for object A

T1

T2

T1 waiting for T2 release X(B)

T2 waiting for T1 release X(A)

22

Deadlock prevention I

By way handle not getting requested lock
• One way: give priorities to transactions

– based on time stamp
• Protocol to decide what happens when Tw wants

lock & Th holds lock:
Wait-die: if priority(Tw) > priority(Th), Tw waits
               otherwise Tw aborts
Wound-wait: if priority(Tw) > priority(Th), Th aborts
               otherwise Tw waits

• For either, argue no cycle in “waiting for” graph
• Starvation?

23

Deadlock prevention II

• Change locking protocol
• Conservative two-phase locking:

transaction acquires all locks ever needs
 at beginning of execution
 or waits with no locks

• no transaction waiting on blocked transaction

24

Deadlock detection

• construct “waiting for” graph periodically
& check for cycle

• must abort transaction to break cycle
– how choose which?

• last edge added?  know?
– heuristics



5

25

Aborting
• Why transactions abort?

– Deadlock avoidance
– System error
– user command

• Dependent transactions could be forced to
abort too:

1. Ti aborts
2. Tk read what Ti wrote
=>
3. Tk must abort (re-execute) EVEN IF Tk has

committed!
– What does “COMMIT” mean?

26

Cascaded aborts
2PH:
Ti:  W(V)   ↑L(V)                      …                         ABORT
Tk:                                               R(V)  COMMIT

Strict 2PH:
• Ti releases locks and commits as atomic action
• Eliminates above problem

Choice of restrictions for conflicts :
• Strict:  Tk does not read or write until Ti commits
• Avoid cascaded abort:  Tk does not read until Ti commits
• Recoverable:  Tk only commits after Ti commits

– CANNOT ABORT after COMMIT

time

27

Summary:
2-phase locking variations

• 2PH:  guarantees conflict serializable
• Strict 2PH: guarantees no cascaded

aborts
• Conservative 2PH:  guarantees no

deadlock
• Strict + conservative 2PH:  only allows

reads of shared objects by uncommitted
transactions.

28

How abort?
• Common:  assume Strict 2PL
                     => no cascaded aborts
• Keep log of all actions of all transactions:

– Sequential writes on separate disk
– Often write differences only

• To abort:  undo actions of transaction
backward in time using log

• Part algorithm for crash recovery

29

Crash Recovery Overview
• Goals of crash recovery

– Either transaction commits and is correct or
aborts

– Commit means all actions of transaction have
been executed

• Error model:
–  lose contents main memory
–  disk contents intact and correct

30

Crash recovery requirements
• If transaction has committed then still

have results (on disk)
• If transaction in process, either

1. Transaction completely aborts
OR
2. Transaction can continue after restore as if

no crash
• Get serializable schedule such that

transactions that committed before crash
still commit and in same order

=> NEED LOG



6

31

Other consistency issues
Dynamics of DB can cause consistency problems

even with Strict 2PL
Example:   T1                                  T2

Schedule: T1:1  T1:2   T2:1,2,3,4  T1:3 T1:4
Aggregate for P before T2 inserts; aggregate for Q after T2

inserts => not serializable and not consistent

 

1. lock all pages containing
records with property P

2. Take an aggregate of those
records

3. Lock all pages containing
records with property  Q

4. Take an aggregate of those
records

1. Lock new page
2. Insert new record with property

P on new page
3. Lock new page
4. Insert new record with property

Q on new page

32

Solutions?
• Need to lock all now and future records
• How?

– Lock whole file :  pages and access -  COSTLY
– Predicate locking:  lock all records satisfying

predicate (e.g. salary > 100K)
– How?

• Special case:  if only using index to reach records
satisfying predicate

• Lock pages in index which contain or would
contain data entries to records satisfying predicate


