
1

COS 597A:
Principles of

Database and Information Systems

Relational model:
Relational calculus

Tuple Relational Calculus
Queries are formulae, which define sets using:
1. Constants
2. Predicates (like select of algebra)
3. Boolean and, or, not
4. ∃ there exists
5. ∀ for all

Variables range over tuples
Value of an attribute of a tuple T can be referred to in

predicates using T[attribute_name]

Example: { T | T ε Winners and T[year] > 2006 }
 |__formula, T free ______|

Winners: (name, tournament, year); base relation of database

Formula defines relation

• Free variables in a formula take on the values of
tuples

• A tuple is in the defined relation if and only if
when substituted for a free variable, it satisfies
(makes true) the formula

Free variable:
∃x, ∀x bind x – truth or falsehood no longer

depends on a specific value of x
If x is not bound it is free

Quantifiers
There exists: ∃x (f(x)) for formula f with free

variable x
• Is true if there is some tuple which when substituted

for x makes f true

 For all: ∀x (f(x)) for formula f with free variable x
• Is true if any tuple substituted for x makes f true

 i.e. all tuples when substituted for x make f true

Example
{T |∃A ∃B (A ε Winners and B ε Winners and
A[name] = T[name] and A[tournament] = T[tournament] and

B[tournament] =T[tournament] and T[name2] = B[name]) }

• T not constrained to be element of a named relation
• Result has attributes defined by naming them in the formula:

T[name], T[tournament], T[name2]
– so schema for result: (name, tournament, name2)

unordered
• Tuples T in result have values for (name, tournament, name2)

that satisfy the formula
• What is the resulting relation?

Formal definition: formula
• A tuple relational calculus formula is

– An atomic formula (uses predicate and constants):
• T ε R where

– T is a variable ranging over tuples
– R is a named relation in the database – a base relation

• T[a] op W[b] where
– a and b are names of attributes of T and W, respectively,
– op is one of < > = ≠ ≤ ≥

• T[a] op constant
• constant op T[a]

2

Formal definition: formula cont.

• A tuple relational calculus formula is

– An atomic formula
– For any tuple relational calculus formulae f and g

• (f)
• not(f)
• f and g
• f or g
• ∃T(f (T)) for T free in f
• ∀T(f (T)) for T free in f

Boolean operations

Quantified

Formal definition: query

A query in the relational calculus is a set definition
{T | f(T) }

where f is a relational calculus formula
 T is the only variable free in f

The query defines the relation Result consisting of tuples T
that satisfy f

The attributes of Result are either defined by name in f or
inherited from base relation R by a predicate Tε R

Some abbreviations for logic

• (p => q) equivalent to ((not p) or q)
• x(f(x)) equiv. to not(x(not f(x)))
• x(f(x)) equiv. to not(x(not f(x)))
• x ε S (f) equiv. to x ((x ε S) => f)
• x ε S (f) equiv. to x ((x ε S) and f)

note departure from Silberschatz et. al.

AA
A

A

EE

E

E

Example: relating to algebra

• How do projection in calculus?
πname,year (Winners)

becomes

{ T | ∃W (W ε Winners ∧
 T[name] = W[name] ∧
 T[year] = W[year]) }

∧ denotes AND

Board examples Board Example 1
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
assignment: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

find SS#, name, and classYr of all student
employees

3

Board Example 2
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
assignment: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

find (student, manager) pairs where both are
students - report SS#s

Board Example 3
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
assignment: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

find names of all CS students working for the
library (library a division)

Board Example 4
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
assignment: (position, division, SS#, managerSS$)

division foreign key referencing PUdivision
study: (SS#, academic_dept., adviser)

SS# foreign key referencing students
PUdivision: (division_name, address, director)

Find academic departments that have students working
in all divisions

Evaluating query in calculus
Declarative – how build new relation {x|f(x)}?
• Go through each candidate tuple value for x
• Is f(x) true when substitute candidate value for

free variable x?
• If yes, candidate tuple is in new relation
• If no, candiate tuple is out

What are candidates?
• Do we know domain of x?
• Is domain finite?

Problem

• Consider {T | not (T ε Winners) }
– Wide open – what is schema for Result?

• Consider {T | ∀S ((S ε Winners) =>
(not (T[name] = S[name] and
 T[year] = S[year]))) }

– Now Result:(name, year) but universe is infinite

Don’t want to consider infinite set of values

Constants of a database and query
Want consider only finite set of values

– What are constants in database and query?

Define:
• Let I be an instance of a database

– A specific set of tuples (relation) for each base
relational schema

• Let Q be a relational calculus query
• Domain (I,Q) is the set of all constants in Q or I
• Let Q(I) denote the relation resulting from

applying Q to I

4

Safe query

A query Q on a relational database with
base schemas {Ri} is safe if and only if:

1. for all instances I of {Ri} , any tuple in Q(I)
contains only values in Domain(I, Q)

Means at worst candidates are all tuples can form from
finite set of values in Domain(I, Q)

Safe query: need more
Require testing quantifiers has finite universe:

2. For each ∃T(p(T)) in the formula of Q,
if p(t) is true for tuple t, then attributes
of t are in Domain(I, Q)

3. For each ∀T(p(T)) in the formula of Q,
if t is a tuple containing a constant not
in Domain(I,Q), then p(t) is true

=> Only need to test tuples in Domain(I,Q)

Safe query: all conditions
A query Q on a relational database with
base schemas {Ri} is safe if and only if:

1. for all instances I of {Ri} , any tuple in Q(I) contains
only values in Domain(I, Q)

2. For each ∃T(p(T)) in the formula of Q, if p(t) is true for
tuple t, then attributes of t are in Domain(I, Q)

3. For each ∀T(p(T)) in the formula of Q, if t is a tuple
containing a constant not in Domain(I,Q), then p(t) is
true

Equivalence Algebra and Calculus

The relational algebra and
the tuple relational calculus
over safe queries
are equivalent in expressiveness

Domain relational calculus
• Similar but variables range over domain values

(i.e. attribute values) not tuples
• Is equivalent to tuple relational calculus when

both restricted to safe expressions

Example:
{<N, K, M> | ∃Y ∃Z (<N, K,Y> ε Winners and
 <M, K, Z> ε Winners) }

N, M range over Winners.name
K ranges over Winners.tournament
Y, Z range over Winners.year

Summary

• The relational calculus provides an
alternate way to express queries

• A formal model based on logical formulae
and set theory

• Equivalence with algebra means can use
either or both – but only one for formal
proofs

• Next we will see that SQL borrows from
both

