COS 597A:
Principles of
Database and Information Systems

Relational model:
Relational algebra continued

Basic operations of relational algebra:

v' 1. Selection o :select a subset of tuples from a relation
according to a condition

v' 2. Projection 1 :delete unwanted attributes (columns)
from tuples of a relation

> 3. cross product X : combine all pairs of tuples of two
relations by making tuples with all attributes of both

v' 4. Set difference — :* tuples in first relation and not in
second

v' 5. union U:* tuples in first relation or second relation
6. Renaming p: to deal with name conflicts

N

* Set operations: D; X D, ... X D, of two relations must agree

Cross product RX T
* Relations
-RCD;XD,X ... XDy

-TC §; XS, X ... XS,

Resulting relation:

- RXTCD; XD, X...XD,XS;XS,X... XS,

— tuple (d4 ,d,,... ,dy,S1,S,...,8,)ERXT
if and only if
(dy,dy,...,d¢)eRand (sqy, Sy, ... , 8, ) €T

— |RXT| ? |R|denotes the number of tuples in R

— candidate keys?

— foreign keys?

Cross product R X T: keys

* Resulting relation:
- RXTCD{XD,X...XD, XS/ X8, X... XS,

— tuple (dy,dy,... ,dy,S;,S;, ... ,S,)ERXT
if and only if
(dy,dy,...,dy)eRand (s;, s, ... ,S,)€T
= IRXT|=[R["T|

> candidate keys:
(dy, dip, ... d; ) candidate key for R

Q( Sj1, Sps -+ Sjg ) candidate key for T

the union of the attributes form a candidate key for R X T
— positions i1, i2, ... ia, k+j1, k+j2 ... k+jB of RXT
> foreign keys: for each of R and T are preserved using
corresponding attributes of RXT.

Naming attributes

Usually give attributes names
— SS#, city, age, ...
For cross-product, candidate key used
positions in tuples to identify attributes
* Alternative naming: R.d; and T.s;

— Mayors.city, Legislators.city
* What if R X R?
— use positions of resulting tuples
—rename one of the copies of R

Renaming pq ) ( E)

E a relational algebra expression

Q a new relation name

L is a list of mappings of attributes of E:
— mapping (old name — new name)

— mapping (attribute position = new name)
resulting relation named Q

— is relation expressed by E

— attributes renamed according to mappings in list L
— Q can be omitted; L can be empty
 All constraints on relation expressed by E are
preserved with appropriate renaming of attributes.

« Facilitates expressing queries; not indispensable 6




Using cross-product and renaming

» Cross-product allows coordination
— see calculation of max in text §2.2.7
* Example
S: (stulD, name) R: (stulD, room#)
find relation giving (name, room#) pairs:
combine: S XR
coordinate: Og syp = rstuin(S X R)
get result: T[S.name, R.room# (cs.stuID= R.s(u\D(S X R) )

find pairs of names of roommates ?

Example: find pairs of names of roommates:
S: (stulD, name) R: (stulD, room#)
relation:(name, room#) = TTg name, R room# (OS.stuID =] R.s(uID(S XR))

combine: (T pame, Rroom# (Os.stip = Rswn(S X R) )) X

PM(t - name, 24rcom#)( TS name, Rroom# (05 stip = Rstun(S X R) ) )

now have (S.name, R.room#, M.name, M.room#)
coordinate: OR room# = M.room# (
(T name, Rroom# (05 stuip = Rstin(S X R) ) X

pM(14name‘24mom#)( TS name, Rroom# (T8 stuip = Rstin(S X R) ) ))

get result: T[S.name, M.name (
OR roomit=M.room  (TTs name, R room# (T's stup =R stuin(S X R) )) X
PM(t—name, 2-room#) ( TT s .name, Rroom# (s stuip = rstun(S X R) ) ) ) %

Example: find pairs of names of roommates:
S: (stulD, name) R: (stulD, room#)

proposed solution:

TTS name, M.name (O room#=room# ( (T name, Rroom# (0s.sup = Rswin(S X R))) X

P(1-name, 2+ roomi) ( TT s name, R room# (T stuip = Rstuin(S X R) ) ) ) )

keeps pairs representing “person roommate of his/her self”
can’t recognize these after eliminate SS#
could be 2 people with same name in same room

fix: do RXR first and check SS#'s agree:

OR room#=Q.room# AND RstulD = Q.stulD ( RX pQ( R ))

Formal definition

* A relational expression is

— Arelation R in the database

— A constant relation

— For any relational expressions E; and E,
«E,UE,
« E,-E,
« E,XE,
+ 0p(E,) for predicate P on attributes of E,
« mg(E,) where S is a subset of attributes of E,
* pauy(E4) where Q is a new relation name and L is a list of

(old name — new name) mappings of attributes of E,

« A query in the relational algebra is
a relational expression

Relational algebra:
derived operations

» operations can be expressed as
compositions of fundamental operations

* operations represent common patterns

 operations are very useful for clarity

Intersection RN T

* direct from set theory
RNT=R-(R-T)
* example
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
find student employees:

T[SS#, name, F‘Uaddr(smdents) n T[SS#, name, addr(emplOyeeS)
or

Tss#, name(Students) N TMggy name(€MPployees)
or

Tgsy(students) N ggy(employees) « safest
or...




Natural Join R 00 T: motivation
¢ Relations Rand T

« Captures paradigm:
combine: RXT
coordinate: op(R X T)
getresult: g (0p(RXT))

« For relations that have one or more attributes that
share name and domain
« Need to refer to attributes shared by identical name

« Example: ‘—\/

students: (SS#, name,\PUaddr, homeAddr, classYr)
employees; (SS#, name) addr, startYr)

Natural Join R 00 T: definition

Let a(R) = the set of names of attributes in the schema for R
« Example: a(Students) = {SS#, name, PUaddr, homeAddr, classYr}

Let a(T) = the set of names of attributes in the schema for T
« Example: a(Employees) = {SS#, name, addr, startYr}

Leta(R) n a(T) ={a4, a,, ..., &}
« Example: a(Students) n a(Employees) = {SS#, name}

ROOT =Tyr)uar) (O (RXT))

R.a;=T.a;, Ra,=T.a,, ..., Ra=T.a,
¢ Students 00 Employees
scheme: (SS#, name, PUaddr, homeAddr, classYr, addr, startYr)
Student tuple and Employee tuple agree on values of SS#, name
=> tuple in join
fill in values of the other attributes of the pair

Natural Join R 00 T: remarks
for a(R) n a(T) ={ay, a,, ..., a}

ROOT =1
UTTEURS

# attributes in R 00 T =

# attrib. in R + # attrib. in T - # attrib. in a(R)na(T)
« duplicate attributes removed
« customary orderinR 00 T :
attributes of R, attributes of T not also in R

each “=" test not valid if not on same domain
could weaken to compatible domains
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Division R+Q — motivation

Suggested by inverse of cross-product
(R+Q) X Q € R but may not equal R

Find fragments of tuples of R that appear in R
paired with all tuples of Q

Example: database of tennis
— relation Winners: (name, tournament, year)

— find all players who have won all tournaments
represented in the Winners relation

Division R+Q — definition

Given relations Q and R with attribute sets a(Q) and a(R),
Such that

— a(Q) is a proper subset of a(R)

— corresponding attributes in a(R)na(Q) are on the same domain

Define
* R+Q is a relation with attribute set a(R+Q) = a(R) - a(Q)
* Atupleisin R + Q exactly when combining

it with every tuple in Q yields a tuple in R

- R+ Qis a subset of T ). qq)(R)
* not necessarily =
— attribute order not maintained => using names to identify attributes

(concatenating)
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Division R+Q — example

relation Winners: (name, tournament, year)

find all players who have won all tournaments
represented in the Winners relation

1. all tournaments: g mament(VWinners)
2. divide into something

Try winners + T mament(Winners) :  ?




Division R+Q — example

relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in
the Winners relation
1. all tournaments: T, mamend(Winners)
2. divide into something
winners + T mamen Winners) : - (name, year)
if tournaments are {US, French, Australian} need
(S.Williams, US, 2008)
(S.Williams, French, 2008)
(S.Williams, Australian, 2008)
to get S.Willaims as a result
and result tuple is (S.Willaims, 2008)
= get win all tournaments in same year

next try?

Division R+Q — example
relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in

the Winners relation

1. all tournaments: g, mamend(Winners)
2. divide into TT hame tournament(Winners) : - (name, tournament)

T hame tournament(WiNNers) + T, mamen(Winners) : (name)

Gives desired result

Division R+Q — how derive

R + Q is expressed with basic relational operations as
To®) - a@(R) = Ty -a@ ( ( Tar)-a@ (R) XQ)-R)

* R+ Qis a subset of T yg).qq)(R)
* what's in M yg).4q(R) @and notin R+ Q?
—a tuple that can’t be combined with every tuple in Q
to getatuple in R
= a combined tuple of Tyg).q) (R) X Q thatisn'tin R
=> a tuple of ) oq) (( TaR)-a@ (R)XQ)-R)

21

Subtract Ty o) ( (T am)-ae) (R) X Q)= R) from egy_oq)R)

« Let(dy,...,d,)e TaR)-a(@) (R)
* Let(qy ....q,)eQ
(dy, -y diyy Q4 +400) € ( TR -a(q) (R) X Q ) may or may not be in R

If (dy, ..., diy) & ToRry-a@) ( ( T oRy-a@ (R)XQ)-R)
Then there is a (qy, ...,q,) € Q such that
(dy, oy Aoy Qg o3 Gg) i8N (T 4m) ) (R)X Q) =R
=> there is a (q4, ...,q,) € Q such that
(dy, ..., d, qy, ...,0,) is not in R
=> (dy, ..., d,,) not in R+Q

=> Correct to subtract (dy, ..., dy,) from Tyg)_4(q) (R)

note not maintaining order of attributes => identifing by name

Subtract Ty, o) (T am)-ae) (R) X Q)= R) from Tegy _oq)R)

+ Let(dy, ..., dp) & TyRry. ) (R)
+ Let(gy,....0,) e Q

But have we subtracted enough from Ty, . o(q) (R) ?

« If(dy, ..., d,) notin R+Q, then there is some (q4, ...,q,) € Q
such that (dy, ..., d, 9y, -..,q,) notin R
=(dy, ..., A, Gy, ---,Gy) N ( MR- (R)XQ)-R )
=(dy, ..., dp) in TgRy_qq) ( ( T gRr)-a@) (R)X Q) - R)
Yes, we have subtracted all that is needed

Note that 1r,q, (R) may contain elements notin Q
Not affect result.
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Board examples




Board Example 1

students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
assignment: (position, division, SS#, managerSS#)
study: (SS#. academic_dept., adviser)

saw find student employees:
Tgsu(students) N ggu(employees) « safest

now: find SS#, name, and classYr of all student
employees

25

Board Example 2

students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
assignment: (position, division, SS#, managerSS#)
study: (SS#. academic_dept., adviser)

find (student, manager) pairs where both are
students - report SS#s

Board Example 3

students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)

jobs: (position, division, SS#, managerSS#)

study: (SS#. academic_dept., adviser)

find names of all CS students working for the
library (library a division)
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Board Example 4

students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
assignment: (position, division, SS#, managerSS$)
division foreign key referencing PUdivision
study: (SS#. academic_dept., adviser)
SS# foreign key referencing students
PUdivision: (division_name, address, director)

Find academic departments that have students
working in all divisions

Relational algebra:
extended operations

* operations cannot be expressed as compositions
of fundamental operations

operations allow arithmetic, counting, grouping,
and extending relations

+ part of database system language
— postpone to SQL discussion
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Summary

* Relational algebra operations provide
foundation of query languages for
database systems

+ Derived operations, especially joins,
simplify expressing queries

» Formal algebraic definition allow for
provably correct simplifications,
optimizations for query evaluation




