
1

1

COS 597A:
Principles of

Database and Information Systems

Relational model:
Relational algebra continued

2

Basic operations of relational algebra:

 1. Selection σ :select a subset of tuples from a relation
according to a condition

 2. Projection π :delete unwanted attributes (columns)
from tuples of a relation

 3. cross product X : combine all pairs of tuples of two
relations by making tuples with all attributes of both

 4. Set difference – :* tuples in first relation and not in
second

 5. union U:* tuples in first relation or second relation
 6. Renaming ρ: to deal with name conflicts

* Set operations: D1 X D2 … X Dk of two relations must agree

3

Cross product R X T
• Relations

– R ⊆ D1 X D2 X … X Dk

– T ⊆ S1 X S2 X … X Sm

• Resulting relation:
– R X T ⊆ D1 X D2 X … X Dk X S1 X S2 X … X Sm

– tuple (d1 , d2 ,… , dk , s1 , s2 , … , sm) ε R X T
 if and only if
 (d1 , d2 ,… , dk) ε R and (s1, s2, … , sm) ε T
– |R X T| ? |R| denotes the number of tuples in R

– candidate keys?
– foreign keys?

4

Cross product R X T: keys
• Resulting relation:

– R X T ⊆ D1 X D2 X … X Dk X S1 X S2 X … X Sm

– tuple (d1 , d2 ,… , dk , s1 , s2 , … , sm) ε R X T
 if and only if
 (d1 , d2 ,… , dk) ε R and (s1, s2, … , sm) ε T
– |R X T| = |R|*|T|

 candidate keys:
(di1, di2, … diα) candidate key for R
(sj1, sj2, … sjβ) candidate key for T

the union of the attributes form a candidate key for R X T
– positions i1, i2, … iα, k+j1, k+j2 … k+jβ of R X T

 foreign keys: for each of R and T are preserved using
corresponding attributes of RXT.

5

Naming attributes

• Usually give attributes names
– SS#, city, age, …

• For cross-product, candidate key used
positions in tuples to identify attributes

• Alternative naming: R.di and T.sj
– Mayors.city, Legislators.city

• What if R X R?
– use positions of resulting tuples
– rename one of the copies of R

6

Renaming ρQ(L)(E)

• E a relational algebra expression
• Q a new relation name
• L is a list of mappings of attributes of E:

– mapping (old name → new name)
– mapping (attribute position → new name)

• resulting relation named Q
– is relation expressed by E
– attributes renamed according to mappings in list L
– Q can be omitted; L can be empty

• All constraints on relation expressed by E are
preserved with appropriate renaming of attributes.

• Facilitates expressing queries; not indispensable

2

7

Using cross-product and renaming

• Cross-product allows coordination
– see calculation of max in text §2.2.7

• Example
S: (stuID, name) R: (stuID, room#)
find relation giving (name, room#) pairs:

combine: S X R
coordinate: σS.stuID = R.stuID(S X R)
get result: πS.name, R.room# (σS.stuID = R.stuID(S X R))

find pairs of names of roommates ?

8

Example: find pairs of names of roommates:
S: (stuID, name) R: (stuID, room#)
relation:(name, room#) = πS.name, R.room# (σS.stuID = R.stuID(S X R))

combine: (πS.name, R.room# (σS.stuID = R.stuID(S X R))) X
 ρM(1→name, 2→room#)(πS.name, R.room# (σS.stuID = R.stuID(S X R)))

now have (S.name, R.room#, M.name, M.room#)
coordinate: σR.room# = M.room# (
 (πS.name, R.room# (σS.stuID = R.stuID(S X R))) X
 ρM(1→name, 2→room#)(πS.name, R.room# (σS.stuID = R.stuID(S X R))))

get result: πS.name, M.name (
 σR.room#=M.room# ((πS.name, R.room# (σS.stuD = R.stuID(S X R))) X
 ρM(1→name, 2→room#) (π S.name, R.room# (σS.stuID = R.stuID(S X R)))))

9

Example: find pairs of names of roommates:
S: (stuID, name) R: (stuID, room#)

proposed solution:
πS.name, M.name (σR.room#=M.room# ((πS.name, R.room# (σS.stuD = R.stuID(S X R))) X
 ρM(1→name, 2→room#) (π S.name, R.room# (σS.stuID = R.stuID(S X R)))))

keeps pairs representing “person roommate of his/her self”
can’t recognize these after eliminate SS#

could be 2 people with same name in same room

fix: do RXR first and check SS#’s agree:
σR.room#=Q.room# AND R.stuID ≠ Q.stuID (R X ρQ(R))

10

Formal definition
• A relational expression is

– A relation R in the database
– A constant relation
– For any relational expressions E1 and E2

• E1 U E2
• E1 – E2
• E1 X E2
• σP (E1) for predicate P on attributes of E1
• πS(E1) where S is a subset of attributes of E1
• ρQ(L)(E1) where Q is a new relation name and L is a list of
 (old name → new name) mappings of attributes of E1

• A query in the relational algebra is
a relational expression

11

Relational algebra:
derived operations

• operations can be expressed as
compositions of fundamental operations

• operations represent common patterns

• operations are very useful for clarity

12

Intersection R ∩ T
• direct from set theory

R ∩ T = R – (R – T)
• example

students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
find student employees:
πSS#, name, PUaddr(students) ∩ πSS#, name, addr(employees)
or
πSS#, name(students) ∩ πSS#, name(employees)
or
 πSS#(students) ∩ πSS#(employees) ← safest
or …

3

13

Natural Join R ◊◊ T: motivation
• Relations R and T

• Captures paradigm:
combine: R X T
coordinate: σP(R X T)
get result: πS (σP(R X T))

• For relations that have one or more attributes that
 share name and domain
• Need to refer to attributes shared by identical name

• Example:
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr) 14

Natural Join R ◊◊ T: definition
Let α(R) = the set of names of attributes in the schema for R

• Example: α(Students) = {SS#, name, PUaddr, homeAddr, classYr}

Let α(T) = the set of names of attributes in the schema for T
• Example: α(Employees) = {SS#, name, addr, startYr}

Let α(R) ∩ α(T) = {a1, a2, …, ak}
• Example: α(Students) ∩ α(Employees) = {SS#, name}

R ◊◊ T = πα(R) U α(R) (σ (R X T))

• Students ◊◊ Employees
scheme: (SS#, name, PUaddr, homeAddr, classYr, addr, startYr)

 Student tuple and Employee tuple agree on values of SS#, name
=> tuple in join
 fill in values of the other attributes of the pair

R.a1=T.a1, R.a2=T.a2, …, R.ak=T.ak

15

Natural Join R ◊◊ T: remarks
for α(R) ∩ α(T) = {a1, a2, …, ak}

R ◊◊ T = πα(R) U α(R) (σ (R X T))
 set union

attributes in R ◊◊ T =
attrib. in R + # attrib. in T - # attrib. in α(R)∩α(T)

• duplicate attributes removed
• customary order in R ◊◊ T :
 attributes of R, attributes of T not also in R

each “=“ test not valid if not on same domain
could weaken to compatible domains

R.a1=T.a1, R.a2=T.a2, …, R.ak=T.ak

16

Division R÷Q – motivation
• Suggested by inverse of cross-product

(R÷Q) X Q ⊆ R but may not equal R

• Find fragments of tuples of R that appear in R
paired with all tuples of Q

• Example: database of tennis
– relation Winners: (name, tournament, year)
– find all players who have won all tournaments

represented in the Winners relation

17

Division R÷Q – definition
Given relations Q and R with attribute sets α(Q) and α(R),
Such that

– α(Q) is a proper subset of α(R)
– corresponding attributes in α(R)∩α(Q) are on the same domain

Define
• R÷Q is a relation with attribute set α(R÷Q) = α(R) - α(Q)
• A tuple is in R ÷ Q exactly when combining (concatenating)

it with every tuple in Q yields a tuple in R
– R ÷ Q is a subset of π α(R) - α(Q)(R)

• not necessarily =
– attribute order not maintained => using names to identify attributes

18

Division R÷Q – example
relation Winners: (name, tournament, year)
find all players who have won all tournaments

represented in the Winners relation

1. all tournaments: πtournament(Winners)
2. divide into something

Try winners ÷ π tournament(Winners) : ?

4

19

Division R÷Q – example
relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in

the Winners relation
1. all tournaments: π tournament(Winners)
2. divide into something

winners ÷ πtournament(Winners) : (name, year)
if tournaments are {US, French, Australian} need

(S.Williams, US, 2008)
(S.Williams, French, 2008)
(S.Williams, Australian, 2008)

to get S.Willaims as a result
and result tuple is (S.Willaims, 2008)

⇒ get win all tournaments in same year
next try?

20

Division R÷Q – example
relation Winners: (name, tournament, year)
find all players who have won all tournaments represented in

the Winners relation

1. all tournaments: π tournament(Winners)
2. divide into π name,tournament(Winners) : (name, tournament)

 π name,tournament(Winners) ÷ πtournament(Winners) : (name)

Gives desired result

21

Division R÷Q – how derive
R ÷ Q is expressed with basic relational operations as

 πα(R) - α(Q)(R) - πα(R) - α(Q) ((πα(R) - α(Q) (R) X Q) – R)
Huh?

• R ÷ Q is a subset of π α(R) - α(Q)(R)
• what’s in π α(R) - α(Q)(R) and not in R ÷ Q ?

– a tuple that can’t be combined with every tuple in Q
to get a tuple in R

⇒ a combined tuple of πα(R) - α(Q) (R) X Q that isn’t in R
⇒ a tuple of πα(R) - α(Q) ((πα(R) - α(Q) (R) X Q) – R)

22

Subtract πα(R) - α(Q)((π α(R) - α(Q) (R) X Q)– R) from πα(R) - α(Q)(R)?

• Let (d1, …, dm) ε πα(R) - α(Q) (R)
• Let (q1, …,qn) ε Q
(d1, …, dm, q1, …,qn) ε (πα(R) - α(Q) (R) X Q) may or may not be in R

If (d1, …, dm) ε πα(R) - α(Q) ((π α(R) - α(Q) (R) X Q) – R)

Then there is a (q1, …,qn) ε Q such that
(d1, …, dm, q1, …,qn) is in (π α(R) - α(Q) (R) X Q) – R

 => there is a (q1, …,qn) ε Q such that
(d1, …, dm, q1, …,qn) is not in R

 => (d1, …, dm) not in R÷Q

 => Correct to subtract (d1, …, dm) from πα(R) - α(Q) (R)

note not maintaining order of attributes => identifing by name

23

Subtract πα(R) - α(Q)((π α(R) - α(Q) (R) X Q)– R) from πα(R) - α(Q)(R)?

• Let (d1, …, dm) ε πα(R) - α(Q) (R)
• Let (q1, …,qn) ε Q

But have we subtracted enough from πα(R) - α(Q) (R) ?
• If (d1, …, dm) not in R÷Q, then there is some (q1, …,qn) ε Q

such that (d1, …, dm, q1, …,qn) not in R
⇒(d1, …, dm, q1, …,qn) in ((πα(R) - α(Q) (R) X Q) – R)
⇒(d1, …, dm) in πα(R) - α(Q) ((π α(R) - α(Q) (R) X Q) – R)
Yes, we have subtracted all that is needed

Note that πα(Q) (R) may contain elements not in Q
Not affect result.

24

Board examples

5

25

Board Example 1
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
assignment: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

saw find student employees:
πSS#(students) ∩ πSS#(employees) ← safest

now: find SS#, name, and classYr of all student
employees

26

Board Example 2
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
assignment: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

find (student, manager) pairs where both are
students - report SS#s

27

Board Example 3
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
jobs: (position, division, SS#, managerSS#)
study: (SS#, academic_dept., adviser)

find names of all CS students working for the
library (library a division)

28

Board Example 4
students: (SS#, name, PUaddr, homeAddr, classYr)
employees: (SS#, name, addr, startYr)
assignment: (position, division, SS#, managerSS$)

division foreign key referencing PUdivision
study: (SS#, academic_dept., adviser)

SS# foreign key referencing students
PUdivision: (division_name, address, director)

Find academic departments that have students
working in all divisions

29

Relational algebra:
extended operations

• operations cannot be expressed as compositions
of fundamental operations

• operations allow arithmetic, counting, grouping,
and extending relations

• part of database system language
– postpone to SQL discussion

30

Summary

• Relational algebra operations provide
foundation of query languages for
database systems

• Derived operations, especially joins,
simplify expressing queries

• Formal algebraic definition allow for
provably correct simplifications,
optimizations for query evaluation

