
1

COS 597A:
Principles of

Database and Information Systems

Information Retrieval

Information Retrieval
• User wants information from a collection of

“objects”: information need
• User formulates need as a “query”

– Language of information retrieval system
• System finds objects that “satisfy” query
• System presents objects to user in “useful form”
• User determines which objects from among

those presented are relevant

Constrast with Databases
• Relational: structured;

– defined with schema
• XML: structure + flexibility => semi-structured

– defined with schema
• Information Retrieval / Search:

collection of text docs / images / MP3 files …
may be heterogeneous
may be many sources with no agreement

no structure imposed by search system
No real scheme

What is a query?
relational: SQL query, relational algebra query …
XML: Xpath query, XQuery query, …
General IR: ?

Think first about text documents

• Early digital searches – digital card
catalog:
– subject classifications, keywords

• “Full text” : words + English structure
– No “meta-structure”

• Classic study
– Gerald Salton SMART project 1960’s

• Lots of scaling since then, but models still
helpful

Modeling documents

• Document is
– Set of terms
– Bag of terms

duplicates
– Sequence of terms

• Terms refer to distinct words or other tokens
– numbers, …

Modeling: queries

• Query
– Basic query is one term
– Multi-term query is

• List of terms
– OR model: some terms
– AND model: all terms

• Boolean combination of terms
• Other constraints?

• Each search engine has own query language
– similar enough that don’t need manual
– semantics not completely clear

2

Modeling: “satisfying”

• What determines if document satisfies
query?

• That depends ….
– Document model
– Query model

• START SIMPLE
– better understanding
– Use components of simple model later

(pure) Boolean Model of IR

• Document: set of terms
• Query: boolean expression over terms
• Satisfying:

– Doc. evaluates to "true" on single-term query
if contains term

– Evaluate doc. on expression query as you
would any Boolean expression

– doc satisfies query if evals to true on query

Boolean Model example
Doc 1: “Computers have brought the world to our fingertips. We will try to

understand at a basic level the science -- old and new -- underlying this new
Computational Universe. Our quest takes us on a broad sweep of scientific
knowledge and related technologies… Ultimately, this study makes us look
anew at ourselves -- our genome; language; music; "knowledge"; and, above
all, the mystery of our intelligence. (cos 116 description)

Doc 2: “An introduction to computer science in the context of scientific,
engineering, and commercial applications. The goal of the course is to teach
basic principles and practical issues, while at the same time preparing
students to use computers effectively for applications in computer science …”
(cos 126 description)

Query: (principles OR knowledge) AND (science AND NOT(engineering))

Boolean Model example
Doc 1: “Computers have brought the world to our fingertips. We will try to

understand at a basic level the science -- old and new -- underlying this new
Computational Universe. Our quest takes us on a broad sweep of scientific
knowledge and related technologies… Ultimately, this study makes us look
anew at ourselves -- our genome; language; music; "knowledge"; and, above
all, the mystery of our intelligence. (cos 116 description)

Doc 2: “An introduction to computer science in the context of scientific,
engineering, and commercial applications. The goal of the course is to teach
basic principles and practical issues, while at the same time preparing
students to use computers effectively for applications in computer science …”
(cos 126 description)

Query: (principles OR knowledge) AND (science AND NOT(engineering))
Doc 1: 0 1 1 0 TRUE

Boolean Model example
Doc 1: “Computers have brought the world to our fingertips. We will try to

understand at a basic level the science -- old and new -- underlying this new
Computational Universe. Our quest takes us on a broad sweep of scientific
knowledge and related technologies… Ultimately, this study makes us look
anew at ourselves -- our genome; language; music; "knowledge"; and, above
all, the mystery of our intelligence. (cos 116 description)

Doc 2: “An introduction to computer science in the context of scientific,
engineering, and commercial applications. The goal of the course is to teach
basic principles and practical issues, while at the same time preparing
students to use computers effectively for applications in computer science …”
(cos 126 description)

Query: (principles OR knowledge) AND (science AND NOT(engineering))
Doc 2: 1 0 1 1 FALSE

(pure) Boolean Model of IR
how “present results in useful form”

• most basic: give list
• meaning of order of list? => RANKING?

• There is no ranking algorithm in pure
Boolean model
– Ideas for making one without changing

semantics of “satisfy”?

3

Next Model: Vector Model

• Document: bag of terms
• Query: list of terms
• Satisfying:

– Each document is scored as to the degree it
satisfies query (non-negative real number)

– doc satisfies query if its score is >0
– Documents are returned in sorted list decreasing

by score:
• Include only non-zero scores
• Include only highest n documents, some n

How compute score?
1. There is a dictionary (aka lexicon) of all

terms, numbering t in all
• Number the terms 1, …, t

2. Change the model of a document
(temporarily):

• A document is a t-dimensional vector
• The ith entry of the vector is the weight

(importance of) term i in the document
3. Change the model of a query (temporarily):

• A query is a t-dimensional vector
• The ith entry of the vector is the weight

(importance of) term i in the query

How compute score, continued

4. Calculate a vector function of the document
vector and the query vector to get the score
of the document with respect to the query.

Choices:
1. Measure the distance between the vectors:

Dist(d,q) = √(Σt
i=1(di – qi)2)

• Is dissimilarity measure
• Not normalized: Dist ranges [0, inf.)
• Fix: use e-Dist with range (0,1]
• Is it the right sense of difference?

How compute score, continued

Choices:
2. Measure the angle between the vectors:

Dot product: d•q = Σt
i=1(di * qi)

• Is similarity measure
• Not normalized: Dist ranges (-inf., inf.)
• Fix: use normalized dot product, with range [-1,1]

(d•q) / (|d|*|q|) where |v| = √ Σt
i=1(vi

2)
• In practice vector components are non-negative so

range is [0,1]
• This most commonly used function for score

Normalizing vectors

• If use unit vectors, d / |d| and v / |v|
some of issues go away

science

engineering

Vector model: Observations

• Have matrix of terms by documents
⇒Can use linear algebra

• Queries and documents are the same
⇒Can compare documents same way

• Clustering documents

• Document with only some of query
terms can score higher than document
with all query terms

4

How compute weights

• Vector model could have weights assigned by
human intervention

• User setting query weights might make sense
– User decides importance of terms in own search

• Someone setting document weights makes no
sense
– Huge number documents – billions

• Return to model of documents as bag of terms –
calculate weights

Some choices for weights

• 0/1 occur/not occur
– problems?

• term frequency
– longer docs versus shorter?

• normalizing helps

– relative frequency w.r.t other terms?
• weighted term frequence

– count for frequency of terms in collection
– can weight for special importance

• e.g. in title of document - uses some structure of doc.

Classic weight calculation

• General notation:
– wjd is the weight of term j in document d
– freqjd is the # of times term j appears in doc d
– nj = # docs containing term j
– N = number of docs in collection

• Classic tf-idf definition of weight:
wjd = freqjd * log(N/ nj)

tf-idf is “term frequency inverse document frequency”

Weight of query components?

• Set (list) of terms, some choices:
1. wjq = 0 or 1
2. wjq = freqjq * log(N/ nj)
 = 0 or log(N/ nj)

• Bag of terms
– Analyze like document

Some queries are prose expressions of information need

Do we want idf term in both document weights
and query weights?

Where get dictionary of t terms?

• Pre-determined dictionary.
– How sure get all terms?

• Build lexicon when collect documents
– What if collection dynamic: add docs?

Vector Model example
Doc 1: “Computers have brought the world to our fingertips. We will try

to understand at a basic level the science -- old and new -- underlying
this new Computational Universe. Our quest takes us on a broad
sweep of scientific knowledge and related technologies… Ultimately,
this study makes us look anew at ourselves -- our genome; language;
music; "knowledge"; and, above all, the mystery of our intelligence.
(cos 116 description)

Frequencies: science 1; knowledge 2; principles 0; engineering 0

Doc 2: “An introduction to computer science in the context of scientific,
engineering, and commercial applications. The goal of the course is
to teach basic principles and practical issues, while at the same time
preparing students to use computers effectively for applications in
computer science …” (cos 126 description)

Frequencies: science 2; knowledge 0; principles 1; engineering 1

5

Vector model example cont.

• Consider the 5 100-level and 200-level COS
courses as the collection (109, 217, 226)

• Only other appearance of our 4 words is
“science” once in 109 description.

• idf: science ln(5/3) = .51

 engineering, principles, knowledge: ln(5/1) = 1.6

Term by Doc. Table: freqjd * log(N/ nj)

3.2knowledge

1.6principles

1.6engineering

1.02.51science

Doc 2Doc 1

Unnormalized score for query:
science, engineering, knowledge, principles

using 0/1 query vector

• Doc 1: 3.71
• Doc 2: 4.22

Query models advantages
• Boolean

- No ranking in pure
+ Get power of Boolean Algebra:

expressivenss and optimize query forms
• Vector

+ Query and document look the same
+ Power of linear algebra
- No requirement all terms present in pure

Other models and variations
probabilistic

Start to enhance model
• Properties of terms within documents

– Frequency of term in doc

– Where in doc?
– Special use? (e.g. in title, font, …)

– Occurs in anchor text of another doc. pointing to
this doc.

Start to enhance model
• Properties of terms within documents
Vector model gave us

– Frequency of term in doc
Property of each occurrence of term in doc.

– Where in doc?
– Special use? (e.g. in title, font, …)

Found when evaluate another document
– Occurs in anchor text of another doc. pointing to

this doc.

• Get general formula for score

6

Model
• Document: sequence of occurences of terms

+ attributes
• Query: sequence of terms

– Can make more complicated
• Docs satisfying query: in current search

engines, documents “containing” all terms
– AND model
– “containing” includes anchor text of pointers to this

doc from other docs
• Ranking: wide open function of document

and terms

Using Web structure in IR

Goal
• Intuition: when Web page points to another Web

page, it confers status/authority/popularity to that
page

• Find a measure that captures intuition

• Not just web linking
– Citations in books, articles
– Doctors referring to other doctors

nodeedge

Goal
• Given a directed graph with n nodes
• Assign each node a score that represents its

importance in structure
– We will look at most widely known:

L. Page and S. Brin’s (Google’s) PageRank

nodeedge

Conferring importance

Core ideas:
 A node should confer some of its

importance to the nodes to which it points
– If a node is important, the nodes it links to

should be important
 A node should not transfer more

importance than it has

PageRank: Attempt 1

Refer to nodes by numbers 1, … , n (arbitrary numbering)
Let ti denote the number of edges out of node i (outdegree)

Define
prnew(k) = ∑i with edge from i to k (pr(i) / ti)

Iterate until converges

Problems
• Sinks (nodes with no edges out)
• Cyclic behavior

1

4

2

3

pr(4)

1/3pr(1)

1/2pr(2)

1/3pr(1)
1/2pr(2)

sink

1/3pr(1)

7

PageRank: Attempt 2

Random walk model
• Attempt 1 gives movement from node to linked neighbor

with probability 1/outdegree
• Add random jump to any node

prnew(k) = α/n + (1-α)∑i with edge from i to k (pr(i) / ti)

– α parameter chosen empirically

• Helps break cycles
• Escape from sinks

1

4

2

3

pr(4)

1/3pr(1)

1/2pr(2)

1/3pr(1)
1/2pr(2)

sink

1/3pr(1)

Normalized?

• Would like ∑1≤k≤n (pr (k)) = 1
• Consider ∑1≤k≤n (prnew(k))

= ∑1≤k≤n(α/n + (1-α)∑i with edge from i to k(pr(i) / ti))
= ∑1≤k≤n(α/n)+∑1≤k≤n((1-α)∑i with edge from i to k(pr(i) / ti)) *
= α + (1-α)∑1≤k≤n ∑i with edge from i to k(pr(i) / ti)
= α + (1-α)∑1≤i≤n∑k with edge from i to k(pr(i) / ti) *
= α + (1-α)∑i with edge from i pr(i))

*inner sum ∑i over incoming *inner sum∑k over outgoing
 edges for one k edges for one ik i

Problem for desired normalization

• Have
∑1≤k≤n (prnew(k)) = α + (1-α)∑i with edge from i pr(i))

• Missing pr(i) for nodes with no edges from them
– sinks!

• Solution: add n edges out of every sink
– Edge to every node including self
– Gives 1/n contribution to every node

Gives desired normalization:
If ∑1≤k≤n (prinitial(k)) = 1
then ∑1≤k≤n (pr(k)) = 1

1

4

2

3
sink

Matrix formulation
• Let E be the n by n adjacency matrix

E(i,k) = 1 if there is an edge from node i to node k
 = 0 otherwise

• Define new matrix L:
 For each row of E (1≤i≤n)

If row i contains ti >0 ones, L(i,k)=(1/ ti) E(i,k), 1≤k≤n
If row i contains 0 ones, L(i,k) = 1/n for all k

• PageRank defined by equation
pr = (α/n, α/n, … α/n)T +(1- α) LT pr

has a solution representing the steady-state values pr(k)

Calculation
• Choose α

– No single best value
– Page and Brin originally used α=.15

• Simple iterative calculation
 Initialize prinitial(k) = 1/n for each node k

• so ∑1≤k≤n (prinitial(k)) = 1

 prnew(k) = α/n + (1-α)∑1≤i≤nL(i,k)pr(i)

• Converges
– Has necessary mathematical properties
– In practice, choose convergence criterion

• Stops iteration

PageRank Observations
• PageRank can be calculated for any graph
• Google calculates on entire Web graph
• Huge calculation for Web graph

– precomputed
– 1998 Google:

• 52 iterations for 322 million links
• 45 iterations for 161 million links

• PageRank must be combined with query-
based scoring for final ranking
– Many variations
– What Google exactly does secret
– Can make some guesses by results

8

Web-based scoring
• PageRank one of class of algorithms
• Second most well-known: HITS

– designed at same time as PageRank by
 Jon Kleinberg while at IBM Almaden Research Center
– Same general goal as PageRank
– Distinguishes 2 kinds of nodes

• Hubs: resource pages
– Point to many authorities

• Authorities: good information pages
– Pointed to by many hubs

• Explointing Web Structure an important part
of information access and analysis

