COS 597A:
Principles of
Database and Information Systems

Indexing, Part Il

Dynamic hashing

* Have talked about static hash

— Pick a hash function and bucket organization
and keep it

— Assume (hope) inserts/deletes balance out
— Use overflow blocks as necessary

* What if database growing?
— Overflow blocks may get too plentiful

— Reorganize hash buckets to eliminate
overflow buckets

+ Can’t completely eliminate

Family of hash functions

« Static hashing:

choose one good hash function h
— What is “good”?

» Dynamic hashing:
chose a family of good hash functions
—hg, hy, hy, hg, o hy
— h;,4 refines h;:
if hy.4(X)= hiyq(y) then hix)=h;(y)

A particular hash function family

« Commonly used: integers mod 2!
—Easy: low order i bits

+ Base hash function can be any h mapping
hash field values to positive integers
hy(x)= h(x) mod 2 for a chosen b

—2b buckets initially
h(x)= h(x) mod 2b*

— Double buckets each refinement
If x integer, h(x)= x sometimes used
»What does this assume for h, to be good?

Specifics of dynamic hashing

» Conceptually double # buckets when reorganize

» Implementationally don’t want to allocate space
may not need
— One bucket overflows, double all buckets? NO!

Solution?
Extendable hashing

— Reorganize when and where need

Extendable hashing

* When a bucket overflows,

— actually split that bucket in two

— Conceptually split all buckets in two
+ Use directory to achieve:

directory ~ Buckets New directory ~ Buckets
I overflows | — split |

S
" — 0:—




Extendable hashing details

+ Indexing directory with h(x)= h(x) mod 2b*
» On overflow, index directory with
h;,4(x)= h(x) mod 2b+*1
+ Directory size doubles
» Add one bucket

00 [ overflows ] 000 |  split

010

.~
[
g——JE
101

110
111

<

* What did we do?

— Split overflowing bucket m
« Allocate new bucket
— Copy directory
— Change pointer of directory entry m+2b+

Keep track of how many bits actually using
— depth of directory: global depth
— depth of each bucket: local depth (WHY KEEP?)

D 00 | overflows j D 000 |  split
2]

001

010

.~

o\ mmz) oo
100

101

110
111

[lfm][m]ie]

@

Rule of bucket splitting

* On bucket m overflow:
— If depth(directory) > depth(bucket m)
« Split bucket m into bucket m and bucket m+2depth(m)
 Update depth buckets m and m-+2depth(m)
+ Update pointers for all directory entries pointing to m

— If depth(directory) = depth(bucket m)
« Split bucket m into bucket m and bucket m+2depth(m)
 Update depth buckets m and m-+2depth(m)
+ Copy directory and update depth(directory)
+ Change pointer of directory entry m+2depth(m)

Example

Buckets: max 4 keys and data per bucket
Start with 4 buckets: depth(directory)=2

Then insert h(r) = 18
bucket ‘10’ overflows

Insert records with
hash values h(r) =
0,1,2,3, 6,10,

14, 7,11, 15: B

2o 1@ 2] 010
o2 ot

100

11 \ﬁz 61014 2] 101
371 15 H?

Example continued
Buckets: max 4 keys and data per bucket

After inserted h(r)=18: Then insert h(r) = 19
bucket ‘11’ overflows

D 000 D 000 0 j
001 001 1 j

010 010
011 (1)(1)[1) 210 18 j
18? 101 31119 j

110
1o N
4715 j

Extendable hashing observations

+ Splitting bucket does not always evenly
distribute contents
— hiy(x) may equal h;,1(x), h;5(x), ...

» May need to split bucket several times
— NOT: global depth — min(local depth) = 1

» Can accept some overflow blocks or split
aggressively

* Almost no overflow blocks with good hash
function and aggressive splitting.

+ If h(x) = h(y) always same bucket
— cannot avoid overflow if too many of these!




Example bad bucket overflow

Bucket:

5,13, 21, 29
h(key) mod 22 =1
h(key) mod 23 =5
If add new entry with h(key)= 37 then h(key) mod 23 =5
=>splitting once not enough

Need depth 4 directory .
5,21, 37

Index Operation
Costs

Extendable Hashing Costs

Assume: One block per bucket; no overflow blocks

+ Look up: #blocksread = 1 + 1
» Assumes directory on disk
* Insert without overflow
= look-up cost + 1 to write block of bucket
» Insert with overflow - splitting once:
= look-up cost + 1 to write block of original bucket
+ 1 to write block of new bucket
+ 2 * (# disk blocks of directory) to copy
it . . .

» Splitting once may not be enough 5

Extendable Hashing Costs

One block per bucket; use some overflow blocks

* Look up: add (# overflow blocks) worst case
* Insert without splitting: add 1 if add new
overflow block
» Insert with splitting once:
add (# overflow blocks) always to look-up cost
add (# overflow blocks) to write cost worst case
» must read overflow blocks to split
+ adding 1 new bucket (block), so end up with
# overflow blocks within 1 of number had before w

B+ tree costs: preliminaries

* height of B+ tree = length of path: root — leaf
< [loggw (N) ]+ 1
* N is number of leaves of tree
» d+1 is min fanout of interior nodes except root
* + 1 is for root

« typically root kept in memory
— keep as many levels of tree as can in memory
— buffer replacement algorithm may do,
or pin

B+ tree costs: What is N?

B+ tree file organization:
— each leaf holds records
N = [( # records in file / # records fit in a block )]
N < 2* [( # records in file / # records fit in a block )]
assuming no duplicate search key values

B+ tree primary index on sequential file:
— each leaf holds pointers to file blocks
* can be sparse index
—one key value (smallest) for each file block
* (key value, pointer) pairs in leaves
—assume fit between d and 2d in leaf
[(# blocks in file) / 2d)] = N < [(# blocks in file) / d)]
+ assumes no key value spans multiple blocks 18




B+ tree costs: What is N?

+ B+ tree secondary index:
— each leaf holds pointers t
* indirection: pointers in*point to records

* must be dense
* (key value, pointer) pairs in leaves
—assume fit between d and 2d in leaf

# key values in file) / d)]

N < [(
N = [(# key values in file) / 2d)]

B+ tree costs: retrieval

* retrieving single record
# of blocks accessed =
height of B+-tree
+ 1 for root if on disk
1 if leaves pt to records
{ 2 if leaves pt to block of pointers to records

<[logg. (N)]+3

« typical height?

20




