
1

1

COS 597A:
Principles of

Database and Information Systems

Indexing, Part II

2

Dynamic hashing

• Have talked about static hash
– Pick a hash function and bucket organization

and keep it
– Assume (hope) inserts/deletes balance out
– Use overflow blocks as necessary

• What if database growing?
– Overflow blocks may get too plentiful
– Reorganize hash buckets to eliminate

overflow buckets
• Can’t completely eliminate

3

Family of hash functions

• Static hashing:
choose one good hash function h
– What is “good”?

• Dynamic hashing:
chose a family of good hash functions
– h0, h1, h2, h3, … hk
– hi+1 refines hi :

if hi+1(x)= hi+1(y) then hi(x)=hi(y)
4

A particular hash function family
• Commonly used: integers mod 2i

– Easy: low order i bits
• Base hash function can be any h mapping

hash field values to positive integers
• h0(x)= h(x) mod 2b for a chosen b

– 2b buckets initially
• hi(x)= h(x) mod 2b+i

– Double buckets each refinement

• If x integer, h(x)= x sometimes used
What does this assume for h0 to be good?

5

Specifics of dynamic hashing

• Conceptually double # buckets when reorganize
• Implementationally don’t want to allocate space

may not need
– One bucket overflows, double all buckets? NO!

Solution?
Extendable hashing

– Reorganize when and where need

6

Extendable hashing
• When a bucket overflows,

– actually split that bucket in two
– Conceptually split all buckets in two

• Use directory to achieve:
directory New directory

overflows split

new

Buckets Buckets

2

7

Extendable hashing details
• Indexing directory with hi(x)= h(x) mod 2b+i

• On overflow, index directory with
hi+1(x)= h(x) mod 2b+i+1

• Directory size doubles
• Add one bucket

00 overflows split

new

01
10
11

000
001
010
011
100
101
110
111 8

• What did we do?
– Split overflowing bucket m

• Allocate new bucket
– Copy directory
– Change pointer of directory entry m+2b+i

Keep track of how many bits actually using
– depth of directory: global depth
– depth of each bucket: local depth (WHY KEEP?)

00 overflows split

new

01
10
11

000
001
010
011
100
101
110
111

2 2

2

2

2

3 3

2

2

2

3

9

Rule of bucket splitting
• On bucket m overflow:

– If depth(directory) > depth(bucket m)
• Split bucket m into bucket m and bucket m+2depth(m)

• Update depth buckets m and m+2depth(m)

• Update pointers for all directory entries pointing to m

– If depth(directory) = depth(bucket m)
• Split bucket m into bucket m and bucket m+2depth(m)

• Update depth buckets m and m+2depth(m)

• Copy directory and update depth(directory)
• Change pointer of directory entry m+2depth(m)

10

Example

00 0

1

2 6 10 14

3 7 11 15

0

1

2 10 18

3 7 11 15

6 14

01
10
11

000
001
010
011
100
101
110
111

2 2

2

2

2

3 2

2

3

2

3

Buckets: max 4 keys and data per bucket
Start with 4 buckets: depth(directory)=2

Insert records with
hash values h(r) =
0, 1, 2, 3, 6, 10,
14, 7, 11, 15:

Then insert h(r) = 18
bucket ‘10’ overflows
=> split

11

Example continued

0

1

2 10 18

3 7 11 15

6 14

000
001
010
011
100
101
110
111

3 2

2

3

2

3

Buckets: max 4 keys and data per bucket

Then insert h(r) = 19
bucket ‘11’ overflows
=> split

After inserted h(r)=18:

0

1

2 10 18

3 11 19

6 14

000
001
010
011
100
101
110
111

3 2

3

3

2

3

7 15 3
12

Extendable hashing observations

• Splitting bucket does not always evenly
distribute contents
– hi(x) may equal hi+1(x), hi+2(x), …

• May need to split bucket several times
– NOT: global depth – min(local depth) = 1

• Can accept some overflow blocks or split
aggressively

• Almost no overflow blocks with good hash
function and aggressive splitting.

• If h(x) = h(y) always same bucket
– cannot avoid overflow if too many of these!

3

13

Example bad bucket overflow

Bucket:

h(key) mod 22 = 1
h(key) mod 23 = 5
If add new entry with h(key)= 37 then h(key) mod 23 = 5
=>splitting once not enough
Need depth 4 directory

2

5, 13, 21, 29

4

5, 21, 37
4

13, 29
0101

1101

…

14

Index Operation
Costs

15

Extendable Hashing Costs
Assume: One block per bucket; no overflow blocks

• Look up: # blocks read = 1 + 1
• Assumes directory on disk

• Insert without overflow
 = look-up cost + 1 to write block of bucket

• Insert with overflow - splitting once:
 = look-up cost + 1 to write block of original bucket
 + 1 to write block of new bucket
 + 2 * (# disk blocks of directory) to copy
 + 1 to change link for original matching directory entry

• Splitting once may not be enough 16

Extendable Hashing Costs

One block per bucket; use some overflow blocks

• Look up: add (# overflow blocks) worst case
• Insert without splitting: add 1 if add new

overflow block
• Insert with splitting once:

 add (# overflow blocks) always to look-up cost
 add (# overflow blocks) to write cost worst case

• must read overflow blocks to split
• adding 1 new bucket (block), so end up with
 # overflow blocks within 1 of number had before

17

B+ tree costs: preliminaries
• height of B+ tree = length of path: root → leaf
 ≤  logd+1 (N)  + 1

• N is number of leaves of tree
• d+1 is min fanout of interior nodes except root
• + 1 is for root

• typically root kept in memory
– keep as many levels of tree as can in memory
– buffer replacement algorithm may do,
 or pin

18

B+ tree costs: What is N?
• B+ tree file organization:

– each leaf holds records
 N ≥ (# records in file / # records fit in a block)
 N ≤ 2* (# records in file / # records fit in a block)

assuming no duplicate search key values

• B+ tree primary index on sequential file:
– each leaf holds pointers to file blocks

• can be sparse index
– one key value (smallest) for each file block

• (key value, pointer) pairs in leaves
– assume fit between d and 2d in leaf

 (# blocks in file) / 2d) ≤ N ≤ (# blocks in file) / d)
• assumes no key value spans multiple blocks

4

19

B+ tree costs: What is N?

• B+ tree secondary index:
– each leaf holds pointers to block of pointers

• indirection: pointers in point to records
• must be dense
• (key value, pointer) pairs in leaves

–assume fit between d and 2d in leaf

 N ≤ (# key values in file) / d)
 N ≥ (# key values in file) / 2d)

20

B+ tree costs: retrieval
• retrieving single record
 # of blocks accessed =

height of B+-tree
+ 1 for root if on disk
 1 if leaves pt to records
 2 if leaves pt to block of pointers to records

≤  logd+1 (N)  + 3

• typical height?

+

