
1

COS 597A:
Principles of

Database and Information Systems

File organization and
access costs

Move down a level of abstraction

• Until now at level of user view of data
– models
– query languages

• Now: how actually store data and access
– disk storage (low-level abstraction)
– file organization (level between disk and user)
– access costs

• Next: how compute query results efficiently
– what are algorithms
– what are costs

Disks

• platters containing tracks
• track read sequentially
• can seek from track to track
• tracks broken into sectors

– smallest physical unit can read / address
– typical size 512 Bytes

Disk access costs

• seek time
– milliseconds

• rotational latency
– milliseconds

• transfer rate
– 100 MB/sec

• compare RAM
– nanoseconds
– factor of 106

•disk closeness
– adjacent sectors
– same track
– same cylinder
– adjacent cylinder

Why use disk?

• too much data for main memory
• need permanent storage

So far as technology advances, disk still
gives significantly more space and less
speed, regardless of how big/cheap RAM
gets
– voracious appetite for space!

File
• collection of records
• records grouped into blocks

– block smallest unit read
– “block” also known as “page”
– typical 4-8 KB

• block is multiple of disk sectors
– stored sequentially on disk

• want blocks of file physically close on disk
• read block into memory buffer

– size of buffer in blocks
– buffer as big as can afford

2

File storage management
• Who manages storage of files on disk

1. custom OS for DBMS
2. let OS do it

– typically one file per relation
3. define one OS file for whole DBMS

– DBMS manages within file

• DBMS buffer manager
– replacement strategy
– pinning
– forced-out blocks

Conceptual organization of file
• Heap file

– no order records in blocks
– linked list blocks or directory of blocks

• Hashing file
– hash function applied to record
 gives address of first block of bucket
– can be overflow

• pointers to overflow blocks
• where overflow blocks on disk?

– try to keep blocks 80% full

Conceptual organization of file:
cont.

• Sequential file
– conceptually ordered set of records
– order often sort on attributes of relation
– stored in order

• sequentially close => physically close
• compact after delete

– binary search?
• need ith block in sorted order
 in one disk I/O

• can have sorted file that is not sequential file

Access cost model

• B number of data blocks in file
• R number of records per block in full block
• D average time to R/W disk block

– assume individual blocks not sequential on
disk

• no multi-block reads paying one seek cost

• Ignore CPU time

Simple average case time analysis

• Assumptions
– Insert at end of heap
– No overflow buckets for hash

• Keep 80% occupancy
• Inserts/deletes in balance

– Sorted sequential file with binary search
– Delete assumes have address of record

• add search time if deleting by record value

• Use analysis for relative costs
– TOO CRUDE for “on the fly” cost estimates 2D2D+BD2DDelete

2DSearch +
D + BD2DInsert

1.25 BD“BDSearch range

D (1
+ # extra
matching
blocks)

D(log2B +
extra
matching
blocks)

BD
Search =
(multiple)

DDlog2B.5BDSearch =
(unique)

1.25 BDBDBDScan

HashedSortedHeapAvg. time

3

Remarks

• to insert or delete from a block, must read and
write block
– gives rise to 2D factors for heap and hash
– gives rise to search + D factor for sorted

• sequential storage of sorted file is maintained
– gives rise to BD factor for insert/delete:

 on average move 1/2 records, touching1/2B blocks,
with a read & write for each

 = 1/2B*2D

