
1

COS 597A:
Principles of

Database and Information Systems

Managing
Functional Dependencies

and
Redundancy

General functional constraints
(Review)

General form for relational model:
• Let α(R) denote the set of names of attributes
 in the schema for relation R
• Let X and Y be subsets of α(R)

The functional dependency X → Y holds if
for any instance I of R and for any pair of
tuples t1 and t2 of R,

πX(t1) = πX(t2) ⇒ πY(t1) = πY(t2)

• special cases: candidate keys, superkeys

Redundancy
• Functional dependencies capture redundancy in a relation

e.g. area code → state: why store state?

• Redundancy good for reliability
• Redundancy bad for

– space to store
• repetitions

– must maintain on changes
– representation of one relationship
 embedded in another

Example relation for a city elementary school system:
school_child: (name, st_addr, apt., birthday, school)

 st_addr → school
consider a large apt. building

Solution: decompose
Example:

child: (name, st_addr, apt., birthday)
placement: (st_addr, school)

• child ◊◊ placement gives school_child
because of functional dependency

• space gain larger than space cost
• functional dependency now primary key constraint
• st_addr, school correspondence explicitly maintained

General Form:
• for X, Y ⊆ α(R) and X → Y
• decompose R into

R1: α(R) - (Y-X)
R2: X U Y

Downside of decompose
Example:

school_child: (school, stuID, st_addr, apt., birthday)
 st_addr → school

becomes
stu: (stuID, st_addr, apt., birthday)
placement: (st_addr, school)

Constraint (school, stuID) → (st_addr, apt., birthday)
• was primary key constraint
• now split constraint

to check requires ◊◊ - expensive
• primary key for stu?

General Form:
for X, Y ⊆ α(R)
and X → Y
decompose R into
•R1: α(R) - (Y-X)
•R2: X U Y

Downside of decompose
Example:

school_child: (school, stuID, st_addr, apt., birthday)
 st_addr → school

becomes stu: (stuID, st_addr, apt., birthday)
 placement: (st_addr, school)

Constraint (school, stuID) → (st_addr, apt., birthday)
• was primary key constraint
• now split constraint

to check requires ◊◊ - expensive
• primary key for stu?

(stuID, st_addr) → (stuID, st_addr, school)
(stuID, st_addr, school) → (stuID, st_addr, apt., birthday)
so stu: (stuID, st_addr, apt., birthday)

• new primary key constraints do not imply
 old primary key constraint:

(school, stuID) → (st_addr, apt., birthday)

2

Decomposition: Formal Properties
• Let Φ be a set of functional dependencies for a relational

scheme R with attribute set α(R)
• Let Φ+ denote the set of all functional dependences

implied by Φ
• Let X, Y ⊆ α(R), where X∩Y is not necessarily empty
• Decomposition of R into R1: X and R2:Y is

– lossless if for every instance I of R that satisfies Φ
πX(I) ◊◊ πY(I) = I

• guaranteed to get back R
– dependency preserving if (Φx U ΦY)+ = Φ+

where Φx denotes the set of functional dependencies V→W in Φ+

with V ⊆ X and W ⊆ X
• can check all functional dependencies for R by checking

all for X and all for Y without doing JOIN

Implied functional dependencies
• Definition: a functional dependency X→Y is

implied by Φ if X→Y holds whenever all
functional dependences in Φ hold

• Armstrong’s Axioms
for attribute sets X, Y, Z
1. if X ⊆ Y then Y → X reflexivity
2. if X → Y then ∀Z (XZ → YZ) augmentation
3. if X → Y and Y → Z then X → Z transitivity

• Theorem: The set of all functional
dependences obtained from Φ by repeated
application of Armstrong’s Axioms gives Φ+

Normal Forms

• How do we find “good ” (“best”?)
decomposition?

• Identify normal forms with desirable
properties

• Decompose so resulting relations are in
normal form

Boyce-Codd Normal Form (BCNF)

• Let R denote a relational scheme with attribute
set α(R)

• R is in BCNF with respect to a set Φ of func.
dep.s if for all func. dep.s in Φ+ of the form X→Y
with X, Y ⊆ α(R), at least one of
– Y ⊆ X (trivial func. dep.)
– X is a superkey for R

• very strong normal form
• can’t always get dependency preserving decomposition

into set of BCNF relations

Third Normal Form (3NF)

• Let R denote a relational scheme with attribute
set α(R)

• R is in 3NF with respect to a set Φ of func. dep.s
if for all func. dep.s in Φ+ of the form X→Y with
X, Y ⊆ α(R), at least one of
– Y ⊆ X (trivial func. dep.)
– X is a superkey for R
– each attribute A in Y-X is contained in a candidate key for R

• can always get lossless, dependency preserving
decomposition into 3NF relations

• cannot always remove all functional dependencies

Why allow right hand side
part of some candidate key?

• consider decomposing R using X → A
– A an attribute
– X not superkey
– A not in X

• get R1: α(R) - (A) and R2: X U {A}
• if A not part of a candidate key then

 for any candidate key K ⊆ α(R)
check K → α(R) -{A} in R1

including K → X
check X → A in R2

conclude K → A
• if A is part of a candidate key K

splitting key: K-A in α(R1); K ∩ (X U {A}) in α(R2)
to check K is a candidate key need R1 ◊◊ R2 AVOIDING

all checks local
to R1 or R2
NO HARM DECOMPOSE

3

Revisit example
Lossless-join decompositon?
Dependency preserving decomposition?
Normal forms? school_child in 3NF

school_child: (school, stuID, st_addr, apt., birthday)
 st_addr → school

becomes
stu: (stuID, st_addr, apt., birthday)
placement: (st_addr, school)

Constraint (school, stuID) → (st_addr, apt., birthday)
• was primary key constraint
• now split constraint

to check requires ◊◊ - expensive

Discussion

• Is polynomial-time algorithm for 3NF
lossless dependency-preserving
decomposition

• Using 3NF minimizes problems of general
functional dependencies
– does not eliminate

• Use BCNF if can get it
– decomposition algorithm simpler too!

