COS 597A:
Principles of
Database and Information Systems

Managing
Functional Dependencies
and
Redundancy

General functional constraints
(Review)

General form for relational model:

» Let a(R) denote the set of names of attributes
in the schema for relation R

» Let Xand Y be subsets of a(R)

The functional dependency X — Y holds if
for any instance I of R and for any pair of
tuples t; and t, of R,

Ty(ty) = y(t) = my(ty) = my(ty)

« special cases: candidate keys, superkeys

Redundancy

» Functional dependencies capture redundancy in a relation

e.g. area code — state: why store state?
* Redundancy good for reliability
* Redundancy bad for
— space to store
« repetitions
— must maintain on changes
— representation of one relationship
embedded in another

Example relation for a city elementary school system:
school_child: (name, st_addr, apt., birthday, school)
st_addr — school
consider a large apt. building

Solution: decompose

Example:

child: (name, st_addr, apt., birthday)
placement: (st_addr, school)

« child 00 placement gives school_child
because of functional dependency
« space gain larger than space cost
« functional dependency now primary key constraint
¢ st_addr, school correspondence explicitly maintained

General Form:
« forX,YCa(R)yand X =Y
» decompose R into

R1: a(R) - (Y-X)

R2: XUY

Downside of decompose

Example:
school_child: (school, stulD, st_addr, apt., birthday)

st_addr — schaol General Form:
becomes for X, Y C a(R)
. : and X =Y
stu: (stulD, st_addr, apt., birthday) decompose R into
placement: (st_addr, school) “R1: a(R) - (Y-X)
R2:XUY

Constraint (school, stulD) — (st_addr, apt., birthday)
« was primary key constraint
¢ now split constraint
to check requires 0¢ - expensive
« primary key for stu?

Downside of decompose

Example:

school_child: (school, stulD, st_addr, apt., birthday)
st_addr — school

becomes stu: (stulD, st_addr, apt., birthday)
placement: (st_addr, school)

Constraint (school, stulD) — (st_addr, apt., birthday)
« was primary key constraint
* now split constraint
to check requires 0¢ - expensive
« primary key for stu?
(stulD, st_addr) — (stulD, st_addr, school)
(stulD, st_addr, school) — (stulD, st_addr, apt., birthday)
so stu: (stulD, st_addr, apt., birthday)
* new primary key constraints do not imply
old primary key constraint:
(school, stulD) — (st_addr, apt., birthday)

Decomposition: Formal Properties

Let ® be a set of functional dependencies for a relational
scheme R with attribute set a(R)
Let ®* denote the set of all functional dependences
implied by @
Let X, Y C a(R), where XNY is not necessarily empty
Decomposition of R into Ry: X and R,:Y is
— lossless if for every instance I of R that satisfies ®

TTy(1) 00 Ty (1) = 1

« guaranteed to get back R

— dependency preserving if (®, U ®y)* = &*

where @, denotes the set of functional dependencies V—W in ®*
with VC Xand W C X

« can check all functional dependencies for R by checking
all for X and all for Y without doing JOIN

Implied functional dependencies

» Definition: a functional dependency X—Y is
implied by @ if X—=Y holds whenever all
functional dependences in ® hold

* Armstrong’s Axioms

for attribute sets X, Y, Z

1. ifXCYthenY —= X reflexivity
2. ifX—=Ythen VZ (XZ — YZ) augmentation
3. fX—=YandY — Zthen X —Z transitivity

e Theorem: The set of all functional
dependences obtained from ® by repeated
application of Armstrong’s Axioms gives ®*

Normal Forms

How do we find “good ” (“best’?)
decomposition?

Identify normal forms with desirable
properties

Decompose so resulting relations are in
normal form

Boyce-Codd Normal Form (BCNF)

» Let R denote a relational scheme with attribute
set a(R)

* Ris in BCNF with respect to a set @ of func.
dep.s if for all func. dep.s in ®* of the form X—Y
with X, Y C a(R), at least one of

— Y C X (trivial func. dep.)
— Xis a superkey for R

« very strong normal form

+ can't always get dependency preserving decomposition
into set of BCNF relations

Third Normal Form (3NF)

Let R denote a relational scheme with attribute
set a(R)

R is in 3NF with respect to a set ® of func. dep.s
if for all func. dep.s in ®* of the form X—Y with
X, Y C a(R), at least one of

— Y C X (trivial func. dep.)

— Xis a superkey for R

— each attribute A in Y-X is contained in a candidate key for R

can always get lossless, dependency preserving
decomposition into 3NF relations

cannot always remove all functional dependencies

Why allow right hand side
part of some candidate key?

+ consider decomposing R using X — A
— Aan attribute
— X not superkey
— Anotin X
+ getR;:a(R) - (A) and R,: X U {A}
 if A not part of a candidate key then
for any candidate key K C a(R)
check K — a(R) -{A}in R,

including K — X all checks local
check X = Ain R, toR; orR,
conclude K — A NO HARM DECOMPOSE

+ if Ais part of a candidate key K
splitting key: K-Ain a(R); KN (XU {A}) in a(Ry)
to check K is a candidate key need R, 00 R, AVOIDING

Revisit example

Lossless-join decompositon?
Dependency preserving decomposition?
Normal forms? school_child in 3NF

school_child: (school, stulD, st_addr, apt., birthday)
st_addr — school

becomes
stu: (stulD, st_addr, apt., birthday)
placement: (st_addr, school)

Constraint (school, stulD) — (st_addr, apt., birthday)
« was primary key constraint
¢ now split constraint
to check requires 0¢ - expensive

Discussion

* Is polynomial-time algorithm for 3NF

lossless dependency-preserving
decomposition

* Using 3NF minimizes problems of general

functional dependencies
— does not eliminate

* Use BCNF if can get it

— decomposition algorithm simpler too!

