COS 597A: Principles of Database and Information Systems

Managing **Functional Dependencies** and Redundancy

### General functional constraints (Review)

General form for relational model: Let α(R) denote the set of names of attributes in the schema for relation R

Let X and Y be subsets of α(R)

The functional dependency  $X \rightarrow Y$  holds if for any instance I of R and for any pair of tuples t<sub>1</sub> and t<sub>2</sub> of R,  $\pi'_{X}(t_1) = \pi_{X}(t_2) \Rightarrow \pi_{Y}(t_1) = \pi_{Y}(t_2)$ 

• special cases: candidate keys, superkeys

## Redundancy

- · Functional dependencies capture redundancy in a relation e.g. area code  $\rightarrow$  state: why store state?
- · Redundancy good for reliability
- · Redundancy bad for
  - space to store repetitions
  - must maintain on changes
  - representation of one relationship
  - embedded in another

Example relation for a city elementary school system: school\_child: (<u>name, st\_addr, apt.</u>, birthday, school) st\_addr → school

consider a large apt. building

### Solution: decompose

#### Example:

child: (name, st\_addr, apt., birthday) placement: (st\_addr, school)

- child ◊◊ placement gives school\_child because of functional dependency
- space gain larger than space cost
- functional dependency now primary key constraint
- · st\_addr, school correspondence explicitly maintained

#### General Form:

Example:

becomes

- for X,  $Y \subseteq \alpha(R)$  and  $X \rightarrow Y$
- decompose R into
  - R1: α(R) (Y-X) R2: X U Y





 $\begin{array}{l} \mbox{track} \mbox{trac$ so stu: (stulD, st\_addr, apt., birthday)

Downside of decompose

school\_child: (school, stuID, st\_addr, apt., birthday)

stu: (stuID, st\_addr, apt., birthday)

st addr → school

- new primary key constraints do not imply old primary key constraint: (school, stuID) → (st\_addr, apt., birthday)

### **Decomposition: Formal Properties**

- Let  $\Phi$  be a set of functional dependencies for a relational
- scheme R with attribute set  $\alpha(R)$  • Let  $\Phi^+$  denote the set of all functional dependences
- implied by  $\Phi$ • Let X, Y  $\subseteq \alpha(R)$ , where X $\cap$ Y is not necessarily empty
- Decomposition of R into  $R_1$ : X and  $R_2$ :Y is
- lossless if for every instance I of R that satisfies  $\Phi = \pi_X(I) \otimes \pi_Y(I) = I$

#### · guaranteed to get back R

- dependency preserving if  $(\Phi_x \cup \Phi_Y)^+ = \Phi^+$ 
  - where  $\Phi_x$  denotes the set of functional dependencies  $V{\rightarrow}W$  in  $\Phi^+$  with  $V\subseteq X$  and  $W\subseteq X$
  - can check all functional dependencies for R by checking all for X and all for Y without doing JOIN

### Implied functional dependencies

- Definition: a functional dependency X→Y is implied by Φ if X→Y holds whenever all functional dependences in Φ hold
- Armstrong's Axioms
  - for attribute sets X, Y, Z
  - 1. if  $X \subseteq Y$  then  $Y \rightarrow X$
  - 2. if  $X \to Y$  then  $\forall Z (XZ \to YZ)$  augmentation

reflexivity

- 3. if  $X \to Y$  and  $Y \to Z$  then  $X \to Z$  transitivity
- Theorem: The set of all functional dependences obtained from Φ by repeated application of Armstrong's Axioms gives Φ<sup>+</sup>

## Normal Forms

- How do we find "good " ("best"?) decomposition?
- Identify normal forms with desirable properties
- Decompose so resulting relations are in normal form

# Boyce-Codd Normal Form (BCNF)

- Let R denote a relational scheme with attribute set α(R)
- R is in BCNF with respect to a set Φ of func. dep.s if for all func. dep.s in Φ<sup>+</sup> of the form X→Y with X, Y ⊆ α(R), at least one of
  - $Y \subseteq X$  (trivial func. dep.)
  - X is a superkey for R
- · very strong normal form
- can't always get dependency preserving decomposition into set of BCNF relations

## Third Normal Form (3NF)

- Let R denote a relational scheme with attribute set  $\alpha(\mathsf{R})$
- R is in 3NF with respect to a set  $\Phi$  of func. dep.s if for all func. dep.s in  $\Phi^+$  of the form  $X \rightarrow Y$  with X, Y  $\subseteq \alpha(R)$ , at least one of
  - $Y \subseteq X$  (trivial func. dep.)
  - X is a superkey for R
  - each attribute A in Y-X is contained in a candidate key for R
- can always get lossless, dependency preserving decomposition into 3NF relations
- · cannot always remove all functional dependencies

#### Why allow right hand side part of some candidate key? • consider decomposing R using $X \rightarrow A$ A an attribute X not superkey - A not in X • get R<sub>1</sub>: α(R) - (A) and R<sub>2</sub>: X U {A} · if A not part of a candidate key then for any candidate key $K \subseteq \alpha(R)$ check $K \rightarrow \alpha(R)$ -{A} in $R_1$ including $K \rightarrow X$ all checks local check $X \rightarrow A$ in $R_2$ to R<sub>1</sub> or R NO HARM DECOMPOSE conclude $K \rightarrow A$ · if A is part of a candidate key K splitting key: K-A in $\alpha(R_1)$ ; K $\cap$ (X U {A}) in $\alpha(R_2)$ to check K is a candidate key need R1 00 R2 AVOIDING

# **Revisit example**

Lossless-join decompositon? Dependency preserving decomposition? Normal forms? school\_child in 3NF

 $\begin{array}{c} school\_child: (\underline{school}, \underline{stulD}, \underline{st}\_addr, apt., birthday) \\ \underline{st\_addr} \rightarrow \underline{school} \\ becomes \end{array}$ 

stu: (<u>stulD, st\_addr</u>, apt., birthday) placement: (<u>st\_addr</u>, school)

Constraint (school, stuID ) → (st\_addr, apt., birthday) • was primary key constraint • now split constraint to check requires ◊◊ - expensive

## Discussion

- Is polynomial-time algorithm for 3NF lossless dependency-preserving decomposition
- Using 3NF minimizes problems of general functional dependencies
  - does not eliminate
- Use BCNF if can get it
  - decomposition algorithm simpler too!