
1

1

COS 597A:
Principles of

Database and Information Systems

Query Evaluation:
Joins and Beyond

2

Summary of join algorithms
• Last time

– Focused on join of R and S on one shared “join
attribute” A

– Developed several algorithms on the board for
various situations
• what are file organizations of R & S?
• what indexes on R & S?

– Each algorithm checks pairs of records, one from R
one from S to compute R ◊◊ S

• parameters
F - number blocks in buffer
|R| - number blocks in R |S| - number blocks in S
nR - number records in R nS - number records in S

3

Major named algorithms
Block nested loop join

checks all pairs in RXS
blocks read = |R| + (|R|/(F-2))*|S|

Index nested loop join
index on S with join
attribute as search key

blocks read =
|R| + ∑ chunks (∑ (
 index cost to first block of records with S.A=xi
 + # additional blocks of such records))
best: ≈ |R| + constant*(# distinct values of A in R)
worst (secondary index): ≈ |R| +nR(index cost to first block) + nS

•read R, F-2 blocks at a time
•for each “chunk” of F-2 blocks of R,

•for each value of A in the chunk
•look up matching records of S

•read R F-2 blocks at a time
•for each “chunk” of F-2
blocks of R,

•read S

distinct values xi of join attribute in chunk

4

Major named algorithms, cont.
Merge join

• Given R and S sorted on join attribute A
• same alg. as merging sorted lists except when find

equal values of R.A and S.A, output all such R,S
pairs of records

blocks read = |R| + |S| + cost to re-read of portion of S
 when one value of xi crosses block boundaries in R

= |R| + |S| + ∑ (
 ((# blocks of R with records having R.A = xi) -1)
 * (# blocks of S with records having S.A=xi))

best: = |R| + |S|
worst: = |R|+|R|*|S| use more buffer to improve

values, xi, of A shared by tuples in R and S

5

External Sorting of file R on attribute A
• Phase 1:

 read R into buffer F blocks at at time
 for each buffer-full

sort and write out run of size F blocks to disk
• at end of phase 1: have |R|/F sorted runs of size F

– remainder may be smaller
• Phase 2:

L0 = { runs at end of phase 1}
while |Li|>1

merge groups of |F|-1 runs in Li into larger runs
 using (|F|-1)-way list merge: 1 input block per run

– remainder may merge fewer
Li+1 = {newly produced runs} // |Li+1| =  |Li|/(F-1)

6

blocks read/written in external sort
• Phase 1 costs 2|R| for read and write
• Phase 2:

– # times through while loop ≤  logF-1 (|R|/F) 
• tree with fanout F-1 and |R|/F leaves

– read and write |R| blocks each time
• rearranging records in buffer
• repacking into blocks

– total cost ≤ 2 |R|* logF-1 (|R|/F) 
• total # block reads/writes

≤ 2*|R| (1 +  logF-1 (|R|/F) )
• if F-1 ≥ √ |R| reduces to 4|R|

2

7

Major named algorithms, cont. 2

• Sort merge join
– sort R and S
– use merge join

• cost if not multiple blocks of duplicates to join:
 2*|R| (1 +  logF-1 (|R|/F) )
 + 2*|S| (1 +  logF-1 (|S|/F) )
 + |R| + |S|
⇒ cost if F ≥ max (√ |R|, √ |S|):
 ≈ 5(|R| + |S|)

8

Final named algorithm we’ll examine
• Hash join

– if can sort R and S to get faster join, why not
build hashes of R and S?

– choose hash function h that maps values of
attribute A into F-1 values

• not pre-existing hash index
– partition each of R, S separately using h:

• read in R one block at a time
• F-1 blocks for output, one for each hash value
• move each record r of R to output block for h(r[A])
• when full, write an output block to disk and link to

last block output for that hash value

9

• hash join continued
 if each bucket of R contains ≤ F-2 blocks:
 for each bucket of R

 read in entire bucket to buffer
 for each block of S in corresponding bucket

• read block into buffer
• compare records in block with all records in
 bucket of R
• write resulting records of join
 to output block of buffer

 can reverse roles of R and S
 cost: 2(|R|+|S|) to build hash buckets
 + |R|+|S| to read in corresponding buckets

10

• hash join still continued

if some corresponding buckets of R and S are
large, i.e. contain > F-2 blocks:

 have 2nd hash function h2 hashing into F-1
values

 for each pair of large buckets of R and S,
partition each bucket using h2

 for each pair of resulting buckets with one
having ≤ F-2 blocks, calculate join

 for each pair of resulting large buckets,
 recurse with h3

…

11

Hash join cost
• If have family of hash functions hi that distribute

uniformly, then need at most i = logF-1(|R|) to
partition |R| down to 1 block buckets.

• Analogous for S.
• Then average recursive depth is

logF-1(min(|R|, |S|)
• Then # blocks read/write
 ≤ 2*logF-1(min(|R|, |S|)*(|R|+|S|)) to do partitioning

 + (|R|+|S|) to do all join calculations

• Can fail to avoid large buckets - collisions
12

Sort merge versus hash
+ hash: only need to recursively partition buckets

until fit in F-2 blocks
- Sort merge must really use  logF-1 (|R|/F)  and
 logF-1 (|S|/F)  levels to merge runs

+ hash: if min(|R|,|S|) < (F-1)(F-2) and hi’s spread
values well, get read/write cost 3(|R|+|S|)

- Sort merge: need max(|R|,|S|)≤(F-1)2 and no
value of A for which both R and S have multiple
blocks to get read/write cost 5(|R|+|S|)

But sort-merge join gives sorted result;
may be useful!

3

13

Observations

• general strategy: reduce to comparing
records in small subsets that fit in memory

• techniques can generalize to varying
degrees from equality on single shared
attribute

14

Query Evaluation:
Beyond Joining

15

Selection

• Operating on only one relation (file)
• Worst case: sequential search

– Linear time
– Often best case too

• If have index on R.A?
– Equality condition on R.A
 => look up cost of index
– Range lb ≤ R.A ≤ ub condition and tree index

=> look up cost of index

16

Selection with multiple conditions
R.x = a AND (R.y = b OR R.z < c) …

• Linear search: check Boolean expression
of all conditions at once
– No extra cost – all in main memory

• If have indexes on attributes in selection
– AND of conditions:

• use index giving lowest cost to retrieve candidates
satisfying condition on attribute of index

– Cost to retrieve record?
– Number of records retrieve?

• Check other conditions on retrieved records

17

Selection with multiple conditions
continued

• If have indexes on attributes in selection
– OR of conditions:

1. Retrieve records satisfying each condition using
index

2. Union retrieved sets to form result of OR
 Total cost of Step 1 must be less than one linear

scan
 If any attribute used in condition has no index

must do scan
 => only do scan

18

Selection with multiple conditions AND
 indexes giving record pointers*

If index for every attribute involved => alternative algorithm:
1. For each equality or inequality condition

 Retrieve using index, the pointers (record IDs)
 for records satisfying condition

2. Sort sets of pointers
3. Merge sets of pointers

• For AND, take intersection
• For OR, take union

4. Retrieve actual data records using pointers
Must evaluate if will be cheaper than getting data records

earlier in process

* i.e. secondary indexes

4

19

Using record pointers

• If can get pointers for all records in query
result can look up data records once

• Manipulate pointers of candidate records
– Smaller size

• When ready to retrieve data records
– Sort disk block location of pointers

• Result may be much smaller than relation
– Read each disk block once
– Read disk blocks contiguously

20

Projection
• Must read all records – linear scan
• Only issue is duplicate removal

1. Most common technique: Sort
– Can eliminate unwanted attributes in Stage 1 of sort

 Shrinks record size => less blocks to write (maybe)
– Can eliminate duplicates in merge phases of sort

2. Alternate technique: analogous to hash-join
1. Drop attributes don’t want and hash into F-1 buckets
2. For each bucket

If bucket fits in F-1 buffer blocks, eliminate duplicates
Otherwise, recurse

3. Gift: sorted file on multi-attribute sort key and
attributes want are a prefix
– When eliminate unwanted attributes, duplicates adjacent

