COS 487: Theory of Computation

Assignment #5

Due: Tuesday, December 2

Sanjeev Arora

Fall 2008

(Contains 8 questions)

1. Consider the language PUZZLE defined in Prob. 7.26 (of both the old and new editions of the book). Now consider a two player version – each player starts with an ordered stack of puzzle cards. The players take turns placing the cards in order in the box and may choose which side faces up. Player I wins if, in the final stack, all hole positions are blocked, and Player II wins if some hole position remains unblocked. Show that the problem of determining which player has a winning strategy for a given starting configuration of the cards is PSPACE-complete.

2. Show that A_{NFA} (the problem of deciding if an NFA accepts a given string) is NL-complete.

3. Let *UPATH* be the analogue of *PATH* for undirected graphs. Let *BIPARTITE* be the problem of deciding if a graph is bipartite (i.e., it can be colored using two colors such that no two adjacent vertices get the same color).

Show that $BIPARTITE \leq_L UPATH$. Recall that in the precept it was mentioned that UPATH is in L, consequently BIPARTITE is in L.

4. Show that if $NP = P^{SAT}$, then NP = coNP.

5. Consider the function pad : $\Sigma^* \times \mathcal{N} \to \Sigma^* \#^*$ that is defined as follows. Let $\operatorname{pad}(s, l) := s \#^j$, where $j = \max(0, l - m)$ and m is the length of s. Thus $\operatorname{pad}(s, l)$ simply adds enough copies of the new symbol # to the end of s so that the length of the result is at least l. For any language A and function $f : \mathcal{N} \to \mathcal{N}$, define the language $\operatorname{pad}(A, f(m))$ as

 $pad(A, f(m)) := \{ pad(s, f(m)) : where s \in A \text{ and } m \text{ is the length of } s \}$

(a) (Warmup) Prove that if $A \in \text{TIME}(n^6)$ then $\text{pad}(A, n^2) \in \text{TIME}(n^3)$.

(b) Prove that, if NEXPTIME \neq EXPTIME, then P \neq NP. *Hint(surprise!)*: Use padding.

6. Define the *unique-sat* problem to be

 $USAT := \{ \phi : \phi \text{ is a boolean formula that has a single satisfying assignment} \}$

Show that $USAT \in \mathsf{P}^{SAT}$.

7. Suppose that A and B are two oracles. One of them is an oracle for TQBF, but you don't know which. Give an algorithm that has access to both A and B and that is guaranteed to solve TQBF in polynomial time.

8. Let HALT denote the halting problem. Show that $P^{\text{HALT}} = NP^{\text{HALT}}$. (i.e., a deterministic machine is as powerful as a non-deterministic one if they both have access to an oracle for the Halting problem).