
COS 487: Theory of Computation Fall 2008

Assignment #4

Due: Tuesday, November 18 Sanjeev Arora

1. Show that P is closed under the star (Kleene closure) operation.

(Hint: Use dynamic programming. Say L ∈ P. Given a string y1 . . . yn, maintain, for every pair of
indices i ≤ j, a boolean A[i, j] that indicates if yi . . . yj is in L∗).

Describe precisely why your algorithm takes polynomial time.

2. Show that NP is closed under the star operation.

3. Show that the following language is NP-complete.

{〈M,x, 1t〉 : NDTM M accepts x in t steps}

4. A cut in an undirected graph is a separation of the vertices into two disjoint subsets S and T .
The size of the cut is the number of edges with one end-point in S and the other in T . Let

MAXCUT = {〈G, k〉 : G has a cut of size k}

Show that MAXCUT is NP-complete.

You may use the reduction from 6= SAT , defined in problem 7.23 of the book. Refer to the book also
for a hint on the reduction (Problems 7.23-24 of the new edition and 7.22-23 of the first edition).

5. This problem is inspired by the single-player game Minesweeper, generalized to an arbitrary
graph. Let G be an undirected graph, where each node either contains a single, hidden mine or
is empty. The player chooses nodes, one by one. If the player chooses a node containing a mine,
the player loses. If the player chooses an empty node, the player learns the number of neighboring
nodes containing mines. (A neighboring node is one connected to the chosen node by an edge).
The player wins if and when all empty nodes have been so chosen.

In the mine consistency problem you are given a graph G, along with numbers labeling some of G’s
nodes. You must determine whether a placement of mines on the remaining nodes is possible, so
that any node v that is labeled m has exactly m neighboring nodes containing mines. Formulate
this problem as a language and show that it is NP-complete.

6. Suppose there exists a polynomial time algorithm that can decide if a boolean formula is
satisfiable. Show how to use this algorithm to find a satisfying assignment to a given boolean
formula. Explain clearly why the running time is polynomial.

Optional. Do the same for the graph isomorphism problem. Suppose you have a polynomial
time algorithm that can decide if two graphs are isomorphic. Use this to design a polynomial time
algorithm that actually finds the isomorphism.

HW4-1



HW4-2 Assignment #4

7. Let f : N → N be a function that is o(log log n). Let L be a language in SPACE(f(n)). Show
that L is in fact regular. (Note that regular languages are in SPACE(O(1))).

Hint. A good way to think about space complexity is to imagine a TM with a read-only tape
consisting of the input and an additional “work tape”. The size of the work tape counts for the
space complexity. Now, consider the shortest string s in L that requires space of m bits. Consider
the ‘configurations’ the machine could have been in as it ‘processed’ the different substrings of s.
Use minimality of s to claim they should all be different, hence the length of s is at most . . .

Optional. Consider the language {[1]2#[2]2#[3]2# . . .#[n]2 : n ≥ 1 is an integer}, where [n]2
denotes the binary representation of n, and the language is over the alphabet {0, 1,#}. Show that
this language is in SPACE(O(log log n)), but is not regular.

8. Say that two Boolean formulas are equivalent if they have the same set of variables and are true
on the same set of assignments to those variables (i.e., they describe the same Boolean function). A
Boolean formula is minimal if no shorter Boolean formula is equivalent to it. Let MIN-FORMULA
be the collection of minimal Boolean formulas.

(a) Show that MIN-FORMULA is in PSPACE.

(b) Explain why the following does not show MIN-FORMULA ∈ co-NP: If φ 6∈ MIN-FORMULA,
then φ has a smaller, equivalent formula. An NTM can verify that φ ∈ MIN-FORMULA by
guessing that formula.

9. Let B be the language of properly nested parentheses and brackets. For example, ([()()]()[])
is in B but ([)] is not. Show that B is in Log-space.


