Standard ML Mini-tutorial
(in particular SML/NJ)

Programming Languages CS442

David Toman

School of Computer Science
University of Waterloo

David Toman (University of Waterloo) Standard ML

Introduction

SML (Standard Meta Language)
= originally part of the LCF project (Gordon et al.)

Industrial strength PL (SML'90, SML'97)
=- based formal semantics (Milner et al.)

SML “Basis Library” (all you ever wanted)
= based on advanced module system

Quality compilers:
= SML/NJ (Bell Labs)
= Moscow ML

David Toman (University of Waterloo) Standard ML 2/21

Features

Everything is built from expressions

= functions are first class citizens
= pretty much extension of our simple functional PL

Support for structured values: lists, trees, ...

Strong type system

= let-polymorphic functions
= type inference

Powerful module system
= signatures, implementations, ADTSs,...

Imperative features (e.g., I/0)

David Toman (University of Waterloo) Standard ML 3/21

Tutorial Goals

@ Make link from our functional language to SML

® Provide enough SML syntax and examples for A2

e How to use SML/NJ interactive environment
How to write simple functional programs
How to define new data types

How to understand compiler errors

Where to find more information

® Show type inference in action (so we understand what’s coming)

David Toman (University of Waterloo) Standard ML 4/21

Getting started
e Starting it up: sml in UNIX (click somewhere in W/XP)

Example
Standard ML of New Jersey, Version 110.0.7 [CM&CMB]

= great support in Emacs
¢ Notation and simple examples:

Example
1
val it = 1 : int
- 2+3;
val it = 5 : int

= | type in blue , SML replies in black

David Toman (University of Waterloo) Standard ML 5/21

Simple Declarations

e We can create declarations (bindings):

Example
- val x = 2*3+4;
val x = 10 : int

= now X stands for 10
e and use them:

Example
- val y = x*2;
val y = 20 : int

= analogue of an environment {x = 10,y = 20}

David Toman (University of Waterloo) Standard ML 6/21

Types of Simple Things

¢ there is more than integers:

Example

- 1.0;

val it = 1.0 : real
"abc";

val it = "abc" : string

- #'a

val it = #"a" : char)

¢ and these types come with additional operations

Example
Ilabcll/\lldefll;
val it = "abcdef" : string

David Toman (University of Waterloo) Standard ML 7121

Functions

e)\-abstractions:

Example
- fn x => x+1;
val it = fn : int -> int

e functions can be “declared” and “used”:

Example

- val twice = (fn x => 2*X);
val twice = fn : int -> int

- twice v;

val it = 40 : int

= what if we wanted a recursive function?

David Toman (University of Waterloo) Standard ML 8/21

Functions

e there is arec construction (which almost nobody uses)
o functions are defined “explicitly” using a fun declaration:

Example
- fun fac n = if (n=0) then 1 else n*(fac (n-1));
val fac = fn : int -> int

e but more commonly using match patterns:

Example
- fun fac 0 = 1
= | fac n = n*(fac (n-1));

val fac = fn : int -> int
- fac 10;
val it = 3628800 : int

v

=- match patterns better cover all possible parameter values!

David Toman (University of Waterloo) Standard ML 9/21

Complex Types: Tuples

e Pairs and k-tuples:

Example

- val pair = (1,"abc");

val pair = (1,"abc") : int * string

- val triple = (1,true,1.0);

val triple = (1,true,1.0) : int * bool * real

e and projections:

Example

- #3(triple);

val it = 1.0 : real

- val (xy) = pair;
val x = 1 : int

val y = "abc" : string

David Toman (University of Waterloo) Standard ML

10/21

Complex Types: Lists
e List construction

Example

- 1:nil;

val it = [1] : int list

- val | = [1,2,3];

val | = [1,2,3] : int list

e and operations:

Example

- hd [

val it = 1 : int
-t

val it = [2,3] : int list
-t n);

val it = [] : int list

David Toman (University of Waterloo) Standard ML

11/21

Functions on Lists
e Function that appends two (arbitrary) lists:

Example
- fun app nil |

= | app (h::t) h:(app t I);

= |
| =
val app = fn : 'a list -> ’a list -> ’'a list

= what are the 'a types? polymorphic type variables
e And what does it do:

Example

- app [1,2,3] [4,5,6];

val it = [1,2,3,4,5,6] : int list
- app ['a""b"] ['c"];

val it = ["a","b","c"] : string list

= the arguments must be lists of the same type

David Toman (University of Waterloo) Standard ML 12/21

Polymorphic Functions

¢ polymorphic = “universal” functions (for all types)

Example

- fun mklist x = [x];

val mklist = fn : ’a -> ’a list
- mklist 1;

val it = [1] : int list

- mklist (mklist 1);

val it = [[1]] : int list list

- fn x=> mklist (mklist x);
val it = fn : 'a -> ’a list list
- it "a"

val it = [["a"]] : string list list

David Toman (University of Waterloo) Standard ML 13/21

Higher-order Functions

¢ functions as parameters? the map function:

Example

- fun map f] =]

= | map f (h:t) = (f h)::(map f t);

val map = fn : (a -> 'b) -> 'a list -> b list

e what does it do?

Example

- map (fn x=> x+1) [1,2,3];

val it = [2,3,4] : int list

- map (fn x=> [X]) [1,2,3];

val it = [[1],[2],[3]] : int list list
- fn I=>map (fn x=> [X]) |;

val it = fn : ’a list -> ’a list list

David Toman (University of Waterloo) Standard ML 14/21

Datatypes

¢ what if we need more than pairs and lists

e SML provides datatypes (disjoint unions)

Example (Binary Trees)

- datatype ’'a bintr = LEAF of 'a
= | NODE of ’a bintr*a bintr;
datatype ’'a bintr = LEAF of 'a

| NODE of ’'a bintr * 'a bintr

= this works for any number of variants
e creating a new tree:

Example

- val tree = NODE (NODE(LEAF 1,LEAF 4),LEAF 7);
val tree = NODE(NODE(LEAF 1,LEAF 4),LEAF 7) : int bintr

David Toman (University of Waterloo) Standard ML 15/21

Datatypes (cont.)

e functions on trees: use pattern matching again

Example

- fun addl (LEAF n) = n

= | addl (NODE(n1,n2)) = (addl nl)+(addl n2);
val addl = fn : int bintr -> int

- addl tree;

val it = 12 : int

e we can do better (a polymorphic function):

Example
- fun mapt f g (LEAF I) = (g I)
= | mapt f g (NODE(n1,n2)) =
= f (mapt f g nl) (mapt f g n2);
val mapt = fn : (a -> 'a -> 'a) ->
(b -> ’a) -> 'b bintr -> 'a

David Toman (University of Waterloo) Standard ML 16/21

Local Declarations

¢ local declarations let <decl> in <exp> end

Example

fun addl (LEAF 1) = |
| addl (NODE(n1,n2)) =
let val al = (addl nl)
val a2 = (addl n2)

in

al+a2
= end;
val addl = fn : int bintr -> int

¢ local (helper) function declarations:

local <helper-fun-decl> in <main-fun-decl> end

David Toman (University of Waterloo) Standard ML 17/21

Exceptions
e whatdoes hd nil do? 1 div 0 ?

Example

- 1 div 0;

uncaught exception divide by zero
raised at: <file stdin>

e We can have our own exceptions:

Example

- exception myex of int;

exception myex of int

- fun cf n = if (n<0) then raise (myex ~1)
= else (fac n);

val cf = fn : int -> int

- cf ~1 handle (myex n) => n;

val it = ~1 : int

David Toman (University of Waterloo) Standard ML

18/21

Modules

e Structures (essentially named declarations)
structure IntLT = struct

type t = int val It = (op <) val eq = (op =)

end

= access to components: IntLT.It

¢ Signatures (essentially types of declarations)
signature ORDERED = sig

type t
val It : t *t -> bool val eq : t *t -> bool
end

o Ascription (match of signature and structure)

= structure strid : sigexp = strexp (transparent)
= structure strid :> sigexp = strexp (opaque)

e Parametrized module: functor s

David Toman (University of Waterloo) Standard ML

19/21

Compiler Error Messages

e incorrect base syntax:
- let x=1 in x end;
stdin:4.1-4.7 Error: syntax error: deleting LET ID EQUAL
stdin:4.9 Error: syntax error found at IN
¢ undeclared identifiers:
- foo;
stdin:4.1 Error: unbound variable or constructor: foo

o type problems:

- [1,"fo0;
stdin:4.1-4.10 Error: operator and operand don’t agree
operator domain: int * int list
operand: int * string list
in expression:
1 : "foo" : nil

David Toman (University of Waterloo) Standard ML 20/21

Summary and Quick Hints
e This should get you started with SML (go and try)

e Several helpful hints:
@ reading program text from file:

use "file.sml";
® print a string on “stdout”:
print “"string-here\n";

® fix-up defaults for printing:
Compiler.Control.Print.printDepth
Compiler.Control.Print.printLength:
Compiler.Control.Print.stringDepth:= 200;

(0 ms)

O these “GC #6.42.43.47.144.8522:
= unless they’re coming and coming (infinite loop)

50;
1000;

" are harmless

® more help: http://iwww.sminj.org//index.html
more complete tutorial:
http://www.cs.cmu.edu/People/rwh/introsml/

David Toman (University of Waterloo) Standard ML

21/21

