
CS 441 Programming Languages

Final

Prof. David Walker

This final should be the individual work of each student in the class. Do not talk to anyone other than
myself (David Walker) or Rob Dockins about the questions on this final. If neither I nor Rob are available
while you are taking the exam and you have a question, make a reasonable assumption, write down that
assumption clearly and continue working. Talking to anyone else about this exam while you are taking it
constitutes a violation of Princeton’s code of academic integrity. You may consult your lecture notes, any of
the course textbooks, any of the course web pages, slides, assignments, mailing list posts, etc. Do not search
for the answers on the general Web (not that you’d find any).

You will work on the exam during a single, continuous 24-hour period occurring between Thursday Jan
8th and Tuesday Jan 14th at 4:30pm, 2009. You must complete the exam in the 24-hour period of time. At
the top of the exam, write down the time you download the exam and the time you hand it in. Please also
sign your name and write: “This exam represents my own work in accordance with University regulations.”
Hand in exams by slipping them under Rob’s office door or by submitting them electronically via email to
rdockins@cs.princeton.edu. The time you spend walking to Rob’s office to hand in the exam does not count
as exam time so you can feel free to do the exam at home, stop when the five hours are up, write your
completion time at the top of the exam and walk it over at your leisure.

Reminders:

• Read questions carefully and completely before beginning your response. Part of the test is whether
or not you are able to read and understand the questions, including the formal inference rules.

• Points will also be deducted for proofs that are unclear or poorly structured.

• Always use the exact syntax of expressions, types, judgments, etc. that you are given in a question,
or clearly define the abbreviations that you’re using. When in doubt, avoid abbreviations. Definitely
do not just start using some new, informal notation without defining it – graders will not be able to
figure out your intent.

• When writing out your proofs, use plenty of space (either electronically or on paper) to make them
easy to read. One of the best ways is to format each line with one true statement (judgment) on the
left and the justification for that statement on the right (in terms of earlier statements and inference
rules, etc.).

• You might find some of the questions quite difficult – try not to get stressed out. Simply move on
to trying to solve a different question. Don’t spend all your time just trying to answer one or two
questions. Partial credit will be given where appropriate when you give partial answers.

The exam is out of 35. Good luck!

1

Short Answers

Q. 1 [1 point] Explain in a sentence or two what “unification” is.

Q. 2 [2 points] Explain in a paragraph, with help of an example, roughly how the “stack inspection”
algorithm works.

Q. 3 [1 point] Give two different stimulae that can cause a transient hardware fault.

Q. 4 [1 point] When proving type safety for the simply-typed lambda calculus, one uses an Exchange
Lemma. In an English sentence or two, explain what the Exchange Lemma says. (You can give the mathe-
matical statement of the lemma, but I also what you to explain in a sentence what the math means. What
is the “essence” of the lemma?)

Q. 5 [2 points] Explain the Curry-Howard Isomorphism in a sentence or two. Enrich your answer by
discussing the concepts involved in the context of the function λx:τ.(x, x), which takes an argument and
returns a pair. Please refer to the notion of a pair and the notion of a function in your answer.

Q. 6 [2 points] Consider the following SML signature:

sig
type key
type map
val compare : (key * key) -> bool
val empty : map
val insert : key -> int -> map
val fold : map -> ’a -> ((’a * int) -> ’a) -> ’a

end

Represent this signature using only pair, unit, sum, void, universal polymorphic, existential polymorphic,
recursive, function, int and bool types (from the lambda calculus).

Q. 7 [1 point] Consider the following SML datatype:

datatype crazy =
Nuts of bool

| Bolts of int * crazy

Represent this datatype using only pair, unit, sum, void, universal polymorphic, existential polymorphic,
recursive, function, int and bool types (from the lambda calculus).

Q. 8 [1 point] Assuming you have done the encoding of the type crazy from Q. 7 above, give a lambda
calculus expression (using unit, pairs, sum expressions, etc.) that corresponds to:

Bolts (3, Nuts true)

The expression you give should have the type that you used in Q. 7 to encode the type crazy.

2

Type Inference

Q. 9 [3 points] Consider each of the following unannotated expressions. If the type inference algorithm
discussed in class can find a type for each expression, give the type. The type you give should be the most
general type possible. It can include type variables, function types, int and bool types. If the type inference
algorithm fails, briefly explain why it fails.

(a) fun f (x) = if x then 1 else f x

(b) fun g (y) = (fun f (x) = if g x then 1 else g (f x))

(c) fun g (y) = (fun f (x) = if y x then x 1 else f x)

Q. 10 [1 point] Give an example of an expression for which type inference does not succeed because of the
“occurs check.” Give a brief English explanation of your example.

A Language of Multi-Sets

The following questions are about a very, very simple typed language with integers and a primitive notion
of multi-sets. A multi-set is exactly like a set, except a multi-set may contain repeated identical elements
in it. For example, {1, 5, 1, 1, 3} is a multi-set with three occurrences of “1”, one occurrence of “5” and one
occurrence of “3”. We write { } for the empty multiset.

The language itself allows you to create a set by simply writing down a set value as {1, 2, 3, 4}. You may
also use the set union operator (e1 ∪ e2) to create a bigger set from smaller ones. A let expression allows
you to bind variables to sets or their elements. Here is an example of a larger program:

let x = 1 in
let y = 2 in
let z = {3} in
({x} U {y}) U z

Here is the syntax of the language:

types τ ::= int | τ set
typing contexts Γ ::= · | Γ, x:τ
numbers n ::= 0 | 1 | 2 | ...
set values s ::= {v1, . . . , vk}
values v ::= n | s
expressions e ::= x | v | {e} | e1 ∪ e2 | let x = e1 in e2

The operational semantics of the language is defined as follows:

e1 −→ e′
1

{e1} −→ {e′
1}

(OS-single)

e1 −→ e′
1

e1 ∪ e2 −→ e′
1 ∪ e2

(OS-U1)
e2 −→ e′

2

v1 ∪ e2 −→ v1 ∪ e′
2

(OS-U2)

{v1, . . . , vj} ∪ {vj+1, . . . , vk} −→ {v1, . . . , vj , vj+1, . . . , vk}
(OS-U3)

e1 −→ e′
1

let x = e1 in e2 −→ let x = e′
1 in e2

(OS-let1)
let x = v in e2 −→ e2[v/x]

(OS-let2)

3

And here are the typing rules:

x:τ ∈ Γ
Γ ` x : τ

(T-var)

Γ ` n : int
(T-int)

for i : 1 . . . k, Γ ` vi : τ

Γ ` {v1, . . . , vk} : τ set
(T-setval)

Γ ` e : τ
Γ ` {e} : τ set

(T-single)

Γ ` e1 : τ set Γ ` e2 : τ set
Γ ` e1 ∪ e2 : τ set

(T-union)

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2
(T-let)

Q. 11 [2 points] Write down (but do not show any steps of the proof of) the statement of the Canonical
Forms Lemma, as you would need it to prove a type safety theorem for this language.

Q. 12 [1 point] Write down (but do not show any steps of the proof of) the statement of the (Value)
Substitution Lemma, as you would need it to prove a type safety theorem for this language.

Q. 13 [3 points] Assuming you have proven the lemmas you wrote down in Q. 10 and Q. 11, prove the
Type Preservation lemma. In other words, prove:

Type Preservation: If · ` e : τ and e −→ e′ then · ` e′ : τ .

You must do your proof by induction on the derivation of e −→ e′. In particular, you must do the cases of
the proof involving operational rule (OS-U2) and operational rule (OS-let2) (you may omit the other cases).
As usual in this class, you should do a well-structured, 2-column proof with valid judgements on the left and
explanations on the right. Here is a proof outline you can start with:

case:
e2 −→ e′

2

v1 ∪ e2 −→ v1 ∪ e′
2

(OS-U2)

(1) · ` v1 ∪ e2 : τ (By Assumption)

...

case:

let x = v in e2 −→ e2[v/x]
(OS-let2)

(1) · ` let x = v in e2 : τ2 (By Assumption)

...

4

Q. 14 [3 points] Assuming you have proven the lemmas you wrote down in Q. 10 and Q. 11, prove the
Progress lemma. In other words, prove:

Progress: If · ` e : τ then either (a) e is a value, or (b) e −→ e′, for some expression e′.

You must do your proof by induction on the derivation of · ` e : τ . In particular, you must do the cases of
the proof involving typing rule (T-single) and typing rule (T-union) (you may omit the other cases). (Unlike
in the previous question, I’m not giving you a proof outline to start from, but nevertheless use good form in
the structure of your proof.)

Q. 15 [2 points] Suppose the operational rules for our language are modified so that this rule:

e1 −→ e′
1

{e1} −→ {e′
1}

(OS-single)

is removed and replaced by this rule:

e1 −→ e′
1

{e1} −→ e′
1

(OS-single2)

Now for each statement below write “yes” if you agree with the statement. Write “no” if you disagree with
the statement. Also write a brief explanation (a sentence or two or a counter-example) to explain why you
said what you said.

(a) [1 point] The progress lemma is not true in the new type system.

(b) [1 point] The preservation lemma is not true in the new type system.

Q. 16 [8 points] In a file named ms.sml, implement the syntax and the typing rules for the language. In
order to implement the syntax, create your own ML datatype. Assuming your datatype is named exp, to
implement the typing rules, you should write a function typecheck with the following type:

typecheck : exp -> bool

Your function should return true if the expression has a type and false otherwise. Your function should
not throw any exceptions. (You may use exceptions internally if you would like. However, they should not
escape the scope of the function.)

In addition to implementing the function typecheck, provide a variety of test cases that show that your
function operates correctly. (Alternatively, you could implement a random expression generator like the ones
Rob implemented in the homeworks, but that is not necessary.) Your code should be well-commented so a
grader can understand what it is doing. In particular, give the grader clear instructions at the top of the
file for using your testing code to verify your implementation. In this question, you may reuse any code you
find useful on the course website or any code you developed while doing your assignments. Even if you are
handing in a paper copy of the exam, be sure to email rob your answer to this question.

One Last Collection of Inductive Definitions!

Consider the following familiar syntactic definitions of lists and natural numbers:

numbers n ::= Z | S n
integer lists l ::= nil | n :: l

Assume that Z represents the natural number zero and S n represents k + 1 if n represents the number
k. Also assume that nil represents the empty list and n :: l represents a list with n on the front followed by
the list l. Consider the following inductive definitions, which define the relations zowy l n and zoink l1 l2.

5

zowy nil Z

zowy l n1

zowy (n :: l) (S n1)

zoink nil nil

zoink l1 l2
zoink (n1 :: l1) ((S (S n1)) :: l2)

Q. 17 [1 point] In English, what do the relations zoink and zowy do?

Q. 18 [3 points] Prove that if zowy l1 n1 and zoink l1 l2 then zowy l2 n1.

6

