
COS 429: COMPUTER VISON
Linear Filters and Edge Detection

• convolution
• shift invariant linear system
• Fourier Transform
• Aliasing and sampling
• scale representation
• edge detection

Reading: Chapters 7, 8

Linear Filters

• Linear filtering:
– Form a new image whose pixels are a

weighted sum of original pixel values,
using the same set of weights at each
point

Convolution

• Represent the linear
weights as an image, F

• F is called the kernel
• Operation is called

convolution
– Center origin of the kernel

F at each pixel location
– Multiply weights by

corresponding pixels
– Set resulting value for each

pixel

• Image, R, resulting from
convolution of F with
image H, where u,v range
over kernel pixels:

Rij = Hi−u, j−vFuv
u,v
∑

Warning: the textbook mixes up
H and F

111

111

111

Slide credit: David Lowe (UBC)

Slide credits for these examples: Bill Freeman, David Jacobs

Convolution

1/9.(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1)1/9.(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1) = =
1/9.(90) = 101/9.(90) = 10

1010 1111 1010
99 1010 1111

1010 99 1010
11

1010
1010

22
99

00
99

00

99
99

99
99

00

11

9999
1010

1010 1111

1100
11

1111
1111

1111
1111
10101010

II

11
11
11

11
11 11

11
11

11

FF

XX XX XX

XX 1010

XX

XX

XX
XX

XX

XX

XX

XX

XX

XX
XX

XX

XX
XX
XXXX

1/91/9

OO

Slide credit: Christopher Rasmussen

Average filter (box filter)
• Mask with positive

entries, that sum to 1.
• Replaces each pixel

with an average of its
neighborhood.

• If all weights are equal,
it is called a box filter.

111

111

111

Slide credit: David Lowe (UBC)

Example: Smoothing with a box filter

Smoothing with a Gaussian

• Smoothing with a box actually
doesn’t compare at all well with
a defocussed lens

• Most obvious difference is that
a single point of light viewed in
a defocussed lens looks like a
fuzzy blob; but the averaging
process would give a little
square.

• A Gaussian gives a good model of
a fuzzy blob

• It closely models many physical
processes (the sum of many small
effects)

Slide credit: David Lowe (UBC)

Gaussian Kernel
• Idea: Weight contributions of neighboring pixels by nearness

• Constant factor at front makes volume sum to 1 (can be ignored, as we should
normalize weights to sum to 1 in any case).

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5, σ = 1

Slide credit: Christopher Rasmussen

Smoothing with a Gaussian

Smoothing reduces pixel
noise:

Each row shows smoothing
with Gaussians of different
width; each column shows
different amounts of
Gaussian noise.

Efficient Implementation

• Both the BOX filter and the Gaussian filter are separable
into two 1D convolutions:
– First convolve each row with a 1D filter
– Then convolve each column with a 1D filter.

Differentiation and convolution

• Recall, for 2D function,
f(x,y):

• This is linear and shift
invariant, so must be the
result of a convolution.

• We could approximate this
as

(which is obviously a
convolution)

∂f
∂x

= lim
ε→0

f x + ε, y()
ε

−
f x,y()

ε
⎛
⎝ ⎜

⎞
⎠ ⎟ ∂f

∂x
≈

f xn+1,y()− f xn , y()
Δx

Vertical gradients from finite differences

Shift invariant linear systems

• 3 properties
– Superposition
– Scaling
– Shift invariance

Discrete convolution

• 1D
• 2D
• “edge effects” in discrete convolution

Spatial frequency and Fourier Transform

Sampling and aliasing

Constructing a pyramid by
taking every second pixel
leads to layers that badly
misrepresent the top layer

Sampling in 1D

Sampling in 2D

Aliasing!

Smoothing and resampling

• Nyquist’s theorem

Algorithm

Filters are templates

• Applying a filter at some point
can be seen as taking a dot-
product between the image and
some vector

• Filtering the image is a set of
dot products

• Insight
– filters look like the effects

they are intended to find
– filters find effects they look

like

Slide credit: David Lowe (UBC)

Normalized correlation

• Think of filters as a dot product of the filter vector with
the image region

– Now measure the angle between the vectors

– Angle (similarity) between vectors can be measured by normalizing
length of each vector to 1.

– Normalized correlation: divide each correlation by square root of sum
of squared values (length)

θcos|||| baba =⋅

Slide credit: David Lowe (UBC)

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications,
1998 copyright 1998, IEEE

Application: Vision system
for TV remote control

- uses template matching

We need scaled representations

• Find template matches at all scales
– e.g., when finding hands or faces, we don’t know what

size they will be in a particular image
– Template size is constant, but image size changes

• Efficient search for correspondence
– look at coarse scales, then refine with finer scales
– much less cost, but may miss best match

• Examining all levels of detail
– Find edges with different amounts of blur
– Find textures with different spatial frequencies (levels

of detail)

Slide credit: David Lowe (UBC)

The Gaussian pyramid

• Create each level from previous one:
– smooth and sample

• Smooth with Gaussians, in part because
– a Gaussian*Gaussian = another Gaussian
– G(x) * G(y) = G(sqrt(x2 + y2))

Slide credit: David Lowe (UBC)

All the extra
levels add very
little overhead
for memory or
computation!

Edge and Corner Detection

• Goal: Identify sudden
changes (discontinuities) in an
image

• This is where most shape
information is encoded

• Example: artist’s line
drawing (but artist is also
using object-level knowledge)

Slide credit: David Lowe (UBC)

What causes an edge?

• Depth discontinuity
• Surface orientation

discontinuity
• Reflectance discontinuity (i.e.,

change in surface material
properties)

• Illumination discontinuity (e.g.,
shadow)

Slide credit: Christopher Rasmussen

Smoothing and Differentiation

• Edge: a location with high gradient (derivative)
• Need smoothing to reduce noise prior to taking derivative
• Need two derivatives, in x and y direction.
• We can use derivative of Gaussian filters

• because differentiation is convolution, and convolution is
associative:

D * (G * I) = (D * G) * I

Derivative of Gaussian

Slide credit: Christopher Rasmussen

Scale
Increased smoothing:
• Eliminates noise edges.
• Makes edges smoother and thicker.
• Removes fine detail.

Edge Detection

− Good detection: the optimal detector must minimize the probability
of false positives (detecting spurious edges caused by noise), as
well as that of false negatives (missing real edges)

− Good localization: the edges detected must be as close as possible
to the true edges.

− Single response constraint: the detector must return one point only
for each true edge point; that is, minimize the number of local
maxima around the true edge

• Criteria for optimal edge detection:

Edge Detection
• Examples:

True
edge

Poor robustness
to noise

Poor
localization

Too many
responses

− This is probably the most widely used edge detector in computer
vision.

− Canny has shown that the first derivative of the Gaussian closely
approximates the operator that optimizes the product of signal-to-
noise ratio and localization.

− His analysis is based on "step-edges" corrupted by "additive
Gaussian noise".

• The Canny edge detector:

Canny Edge Detection

Canny Edge Detection

Steps:
1. Smooth image w/ Gaussian filter
2. Apply derivative of Gaussian
3. Find magnitude and orientation of gradient
4. ‘Non-maximum suppression’

• Thin multi-pixel wide “ridges” down to single pixel width
5. ‘Hysteresis’: Linking and thresholding

• Low, high edge-strength thresholds
• Accept all edges over low threshold that are connected to

edge over high threshold
• Matlab: edge(I, ‘canny’)

Canny Edge Detector
First Two Steps

• Smoothing

• Derivative

IyxgyxgIS ∗=∗=),(),(
2

22

2

2
1),(σ

σπ

yx

eyxg
+

−
=

() () IgIgS ∗∇=∗∇=∇

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂
∂
∂

=∇
y

x

g
g

y
g
x
g

g
I

g
g

S
y

x ∗⎥
⎦

⎤
⎢
⎣

⎡
=∇ ⎥

⎦

⎤
⎢
⎣

⎡
∗
∗

=
Ig
Ig

y

x

Canny Edge Detector
Derivative of Gaussian

),(yxg

),(yxgx

),(yxg y

Canny Edge Detector
First Two Steps

xS

yS

I

Canny Edge Detector
Third Step

• Gradient magnitude and gradient direction

x

y

yx

yx

S
S

SS

SS

1

22

tan

)(

),(

−==

+=

θdirection

magnitude

 VectorGradient

image gradient magnitude

Canny Edge Detector
Fourth Step

• Non maximum suppression

We wish to mark points along the curve where the magnitude is biggest. We can
do this by looking for a maximum along a slice normal to the curve (non-maximum
suppression). These points should form a curve. There are then two algorithmic
issues: at which point is the maximum, and where is the next one?

Non-maximum
suppression

At q, the
value must
be larger
than values
interpolated
at p or r.

Examples:
Non-Maximum Suppression

courtesy of G. Loy

Original image Gradient magnitude Non-maxima
suppressed

Slide credit: Christopher Rasmussen

fine scale
high
threshold

coarse
scale,
high
threshold

coarse
scale
low
threshold

Linking to the
next edge point

Assume the marked
point is an edge
point.

Take the normal to
the gradient at that
point and use this to
predict continuation
points (either r or s).

• Hysteresis: A lag or momentum factor
• Idea: Maintain two thresholds khigh and klow

– Use khigh to find strong edges to start edge chain
– Use klow to find weak edges which continue edge chain

• Typical ratio of thresholds is roughly
khigh / klow = 2

Canny Edge Detector
Step 5: Hysteresis Thresholding

Example: Canny Edge Detection

courtesy of G. Loy

gap is gone

Original
image

Strong
edges

only

Strong +
connected
weak edges

Weak
edges

