
COS 429: COMPUTER VISON
Linear Filters and Edge Detection

• convolution
• shift invariant linear system
• Fourier Transform
• Aliasing and sampling
• scale representation
• edge detection

Reading: Chapters 7, 8







Linear Filters

• Linear filtering:
– Form a new image whose pixels are a 

weighted sum of original pixel values, 
using the same set of weights at each 
point



Convolution

• Represent the linear 
weights as an image, F

• F is called the kernel
• Operation is called 

convolution
– Center origin of the kernel 

F at each pixel location
– Multiply weights by 

corresponding pixels
– Set resulting value for each 

pixel

• Image, R, resulting from 
convolution of F with 
image H, where u,v range 
over kernel pixels:

Rij = Hi−u, j−vFuv
u,v
∑

Warning: the textbook mixes up
H and F
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Slide credit: David Lowe (UBC)



Slide credits for these examples: Bill Freeman, David Jacobs































Convolution
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Slide credit: Christopher Rasmussen



Average  filter (box filter)
• Mask with positive 

entries, that sum to 1.
• Replaces each pixel 

with an average of its 
neighborhood.

• If all weights are equal, 
it is called a box filter.
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Slide credit: David Lowe (UBC)



Example: Smoothing with a box filter



Smoothing with a Gaussian

• Smoothing with a box actually 
doesn’t compare at all well with 
a defocussed lens

• Most obvious difference is that 
a single point of light viewed in 
a defocussed lens looks like a 
fuzzy blob; but the averaging 
process would give a little 
square.

• A Gaussian gives a good model of 
a fuzzy blob

• It closely models many physical 
processes (the sum of many small 
effects)

Slide credit: David Lowe (UBC)



Gaussian Kernel
• Idea: Weight contributions of neighboring pixels by nearness

• Constant factor at front makes volume sum to 1 (can be ignored, as we should 
normalize weights to sum to 1 in any case).

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

Slide credit: Christopher Rasmussen



Smoothing with a Gaussian



Smoothing reduces pixel 
noise:

Each row shows smoothing
with Gaussians of different
width; each column shows
different amounts of 
Gaussian noise.



Efficient Implementation

• Both the BOX filter and the Gaussian filter are separable 
into two 1D convolutions:
– First convolve each row with a 1D filter
– Then convolve each column with a 1D filter.



Differentiation and convolution

• Recall, for 2D function, 
f(x,y):

• This is linear and shift 
invariant, so must be the 
result of a convolution.

• We could approximate this 
as

(which is obviously a 
convolution)

∂f
∂x

= lim
ε→0

f x + ε, y( )
ε

−
f x,y( )

ε
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ∂f

∂x
≈

f xn+1,y( )− f xn , y( )
Δx



Vertical gradients from finite differences



Shift invariant linear systems

• 3 properties
– Superposition
– Scaling
– Shift invariance



Discrete convolution

• 1D
• 2D
• “edge effects” in discrete convolution



Spatial frequency and Fourier Transform







Sampling and aliasing

Constructing a pyramid by 
taking every second pixel 
leads to layers that badly 
misrepresent the top layer



Sampling in 1D



Sampling in 2D







Aliasing!



Smoothing and resampling

• Nyquist’s theorem





Algorithm



Filters are templates

• Applying a filter at some point 
can be seen as taking a dot-
product between the image and 
some vector

• Filtering the image is a set of 
dot products

• Insight 
– filters look like the effects 

they are intended to find
– filters find effects they look 

like

Slide credit: David Lowe (UBC)



Normalized correlation

• Think of filters as a dot product of the filter vector with 
the image region

– Now measure the angle between the vectors

– Angle (similarity) between vectors can be measured by normalizing 
length of each vector to 1.

– Normalized correlation: divide each correlation by square root of sum 
of squared values (length)

θcos|||| baba =⋅

Slide credit: David Lowe (UBC)



Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications, 
1998 copyright 1998, IEEE

Application: Vision system   
for TV remote control

- uses template matching



We need scaled representations

• Find template matches at all scales
– e.g., when finding hands or faces, we don’t know what 

size they will be in a particular image
– Template size is constant, but image size changes

• Efficient search for correspondence
– look at coarse scales, then refine with finer scales
– much less cost, but may miss best match

• Examining all levels of detail
– Find edges with different amounts of blur
– Find textures with different spatial frequencies (levels 

of detail)

Slide credit: David Lowe (UBC)



The Gaussian pyramid

• Create each level from previous one:
– smooth and sample

• Smooth with Gaussians, in part because
– a Gaussian*Gaussian = another Gaussian 
– G(x) * G(y) = G(sqrt(x2 + y2))

Slide credit: David Lowe (UBC)



All the extra 
levels add very 
little overhead 
for memory or 
computation!



Edge and Corner Detection

• Goal:  Identify sudden 
changes (discontinuities) in an 
image

• This is where most shape 
information is encoded

• Example: artist’s line 
drawing (but artist is also 
using object-level knowledge)

Slide credit: David Lowe (UBC)



What causes an edge?

• Depth discontinuity
• Surface orientation 

discontinuity
• Reflectance discontinuity (i.e., 

change in surface material 
properties)

• Illumination discontinuity (e.g., 
shadow)

Slide credit: Christopher Rasmussen



Smoothing and Differentiation

• Edge: a location with high gradient (derivative)
• Need smoothing to reduce noise prior to taking derivative
• Need two derivatives, in x and y direction. 
• We can use derivative of Gaussian filters

• because differentiation is convolution, and convolution is 
associative:

D * (G * I) = (D * G) * I



Derivative of Gaussian

Slide credit: Christopher Rasmussen



Scale
Increased smoothing:
• Eliminates noise edges.
• Makes edges smoother and thicker.
• Removes fine detail.



Edge Detection

− Good detection: the optimal detector must minimize the probability 
of false positives (detecting spurious edges caused by noise), as 
well as that of false negatives (missing real edges)

− Good localization: the edges detected must be as close as possible 
to the true edges.

− Single response constraint: the detector must return one point only 
for each true edge point; that is, minimize the number of local 
maxima around the true edge

• Criteria for optimal edge detection:



Edge Detection
• Examples:

True 
edge

Poor robustness 
to noise

Poor
localization

Too many
responses



− This is probably the most widely used edge detector in computer 
vision.

− Canny has shown that the first derivative of the Gaussian closely 
approximates the operator that optimizes the product of signal-to-
noise ratio and localization.

− His analysis is based on "step-edges" corrupted by "additive 
Gaussian noise".

• The Canny edge detector:

Canny Edge Detection



Canny Edge Detection

Steps:
1. Smooth image w/ Gaussian filter
2. Apply derivative of Gaussian
3. Find magnitude and orientation of gradient
4. ‘Non-maximum suppression’

• Thin multi-pixel wide “ridges” down to single pixel width
5. ‘Hysteresis’: Linking and thresholding

• Low, high edge-strength thresholds
• Accept all edges over low threshold that are connected to 

edge over high threshold
• Matlab: edge(I, ‘canny’)



Canny Edge Detector
First Two Steps

• Smoothing

• Derivative
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Canny Edge Detector
Derivative of Gaussian
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Canny Edge Detector
First Two Steps
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Canny Edge Detector
Third Step

• Gradient magnitude and gradient direction
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Canny Edge Detector
Fourth Step

• Non maximum suppression

We wish to mark points along the curve where the magnitude is biggest. We can 
do this by looking for a maximum along a slice normal to the curve (non-maximum 
suppression).  These points should form a curve.  There are then two algorithmic 
issues: at which point is the maximum, and where is the next one?



Non-maximum
suppression

At q, the 
value must 
be larger 
than values 
interpolated 
at p or r.



Examples: 
Non-Maximum Suppression

courtesy of G. Loy

Original image Gradient magnitude Non-maxima 
suppressed

Slide credit: Christopher Rasmussen





fine scale
high 
threshold



coarse 
scale,
high 
threshold



coarse
scale
low
threshold



Linking to the 
next edge point

Assume the marked 
point is an edge 
point.  

Take the normal to 
the gradient at that 
point and use this to 
predict continuation 
points (either r or s). 



• Hysteresis: A lag or momentum factor
• Idea: Maintain two thresholds khigh and klow

– Use khigh to find strong edges to start edge chain
– Use klow to find weak edges which continue edge chain

• Typical ratio of thresholds is roughly
khigh / klow = 2

Canny Edge Detector
Step 5: Hysteresis Thresholding



Example: Canny Edge Detection

courtesy of G. Loy

gap is gone

Original
image

Strong
edges

only

Strong +
connected
weak edges

Weak
edges


