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Abstract. We introduce and analyze a new algorithm for linear claggifin which combines Rosenblatt’s
perceptron algorithm with Helmbold and Warmuth’s leave-@ut method. Like Vapnik’s maximal-margin clas-
sifier, our algorithm takes advantage of data that are lipsaparable with large margins. Compared to Vapnik’s
algorithm, however, ours is much simpler to implement, angtlmmore efficient in terms of computation time.
We also show that our algorithm can be efficiently used in Végy dimensional spaces using kernel functions.
We performed some experiments using our algorithm, and sanients of it, for classifying images of handwrit-
ten digits. The performance of our algorithm is close to,fmittas good as, the performance of maximal-margin
classifiers on the same problem, while saving significantlg@mputation time and programming effort.

1. Introduction

One of the most influential developments in the theory of rrechkearning in the last few
years is Vapnik’s work on support vector machines (SVM) f\M&p1982). Vapnik’'s anal-
ysis suggests the following simple method for learning clempinary classifiers. First,
use some fixed mapping to map the instances into some very high dimensional space
in which the two classes are linearly separable. Then useérgtia programming to find
the vector that classifies all the data correctly and max@mthemargin i.e., the minimal
distance between the separating hyperplane and the iestanc

There are two main contributions of his work. The first is aghiaf a new bound on the
difference between the training error and the test erroriofear classifier that maximizes
the margin. The significance of this bound is that it depemdig on the size of the margin
(or the number of support vectors) and not on the dimensitis.superior to the bounds
that can be given for arbitrary consistent linear classfier

The second contribution is a method for computing the malkimaagin classifier effi-
ciently for some specific high dimensional mappings. Thithoe is based on the idea of
kernel functions, which are described in detail in Section 4

The main part of algorithms for finding the maximal-margiasdifier is a computation
of a solution for a large quadratic program. The constramtle program correspond to
the training examples so their number can be very large. Miithe recent practical work
on support vector machines is centered on finding efficiegswésolving these quadratic
programming problems.

In this paper, we introduce a new and simpler algorithm foedir classification which
takes advantage of data that are linearly separable wigie larargins. We named the
new algorithm thevoted-perceptromlgorithm. The algorithm is based on the well known
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perceptron algorithm of Rosenblatt (1958, 1962) and a ftoamation of online learn-
ing algorithms to batch learning algorithms developed bintteld and Warmuth (1995).
Moreover, following the work of Aizerman, Braverman and Boaer (1964), we show
that kernel functions can be used with our algorithm so tleatan run our algorithm effi-
ciently in very high dimensional spaces. Our algorithm asdialysis involve little more
than combining these three known methods. On the other hiamdesulting algorithm is
very simple and easy to implement, and the theoretical b®ondhe expected general-
ization error of the new algorithm are almost identical te Hounds for SVM’s given by
Vapnik and Chervonenkis (1974) in the linearly separabse ca

We repeated some of the experiments performed by Cortes apik/(1995) on the
use of SVM on the problem of classifying handwritten digkte tested both the voted-
perceptron algorithm and a variant based on averagingrritha voting. These exper-
iments indicate that the use of kernel functions with thecggtron algorithm yields a
dramatic improvement in performance, both in test accuamy in computation time.
In addition, we found that, when training time is limitedettioted-perceptron algorithm
performs better than the traditional way of using the perospalgorithm (although all
methods converge eventually to roughly the same level dbpaance).

Recently, Friess, Cristianini and Campbell (1998) haveegrpented with a different
online learning algorithm called tlagatron This algorithm was suggested by Anlauf and
Biehl (1989) as a method for calculating the largest margissifier (also called the “max-
imally stable perceptron”). They proved that their algomitconverges asymptotically to
the correct solution.

Our paper is organized as follows. In Section 2, we deschbevbted perceptron al-
gorithm. In Section 3, we derive upper bounds on the expegteeralization error for
both the linearly separable and inseparable cases. Ino8ettiwe review the method of
kernels and describe how it is used in our algorithm. In $ech, we summarize the re-
sults of our experiments on the handwritten digit recognitiroblem. We conclude with
Section 6 in which we summarize our observations on theoalsibetween the theory and
the experiments and suggest some new open problems.

2. The Algorithm

We assume that all instances are pox¥sR". We usd |x|| to denote the Euclidean length
of x. For most of the paper, we assume that lapedse in{—1, +1}.

The basis of our study is the classical perceptron algoritivented by Rosenblatt (1958,
1962). This is a very simple algorithm most naturally stddrethe online learning model.
The online perceptron algorithm starts with an initial zerediction vectorv = 0. It
predicts the label of a new instanc¢o bey = sign(v - x). If this prediction differs from
the labely, it updates the prediction vectorto= v + yx. If the prediction is correct then
v is not changed. The process then repeats with the next egampl

The most common way the perceptron algorithm is used foniegrfrom a batch of
training examples is to run the algorithm repeatedly thiotlg training set until it finds
a prediction vector which is correct on all of the training SEhis prediction rule is then
used for predicting the labels on the test set.
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Block (1962), Novikoff (1962) and Minsky and Papert (196@yé shown that if the
data are linearly separable, then the perceptron algonitiiihmake a finite number of
mistakes, and therefore, if repeatedly cycled through thi@ihg set, will converge to a
vector which correctly classifies all of the examples. Meegpthe number of mistakes is
upper bounded by a function of the gap between the positidamagative examples, a fact
that will be central to our analysis.

In this paper, we propose to use a more sophisticated methadpdying the online
perceptron algorithm to batch learning, namely, a vanetibthe leave-one-out method of
Helmbold and Warmuth (1995). In tveted-perceptroalgorithm, we store more informa-
tion during training and then use this elaborate infornratmgenerate better predictions
on the test data. The algorithmis detailed in Figure 1. Tharimation we maintain during
training is the list ofall prediction vectors that were generated after each and ewvisry
take. For each such vector, we count the number of iteratidearvives” until the next
mistake is made; we refer to this count as the “weight” of thedjztion vector. To cal-
culate a prediction we compute the binary prediction of emwh of the prediction vectors
and combine all these predictions by a weighted majoritg vdhe weights used are the
survival times described above. This makes intuitive serss&ood” prediction vectors
tend to survive for a long time and thus have larger weighthémajority vote.

3. Analysis

In this section, we give an analysis of the voted-percepafgarithm for the casé& = 1 in
which the algorithm runs exactly once through the trainiatad We also quote a theorem
of Vapnik and Chervonenkis (1974) for the linearly sepagatase. This theorem bounds
the generalization error of the consistent perceptrondaiter the perceptron algorithm is
run to convergence. Interestingly, for the linearly sepkr@ase, the theorems yield very
similar bounds.

As we shall see in the experiments, the algorithm actualhtinaes to improve perfor-
mance aftefl” = 1. We have no theoretical explanation for this improvement.

If the data are linearly separable, then the perceptronighgowill eventually converge
on some consistent hypothesis (i.e., a prediction vectdristrcorrect on all of the training
examples). As this prediction vector makes no further rkegait will eventually dom-
inate the weighted vote in the voted-perceptron algoritihus, for linearly separable
data, wherll" — oo, the voted-perceptron algorithm converges to the regudarai the
perceptron algorithm, which is to predict using the finaldicgon vector.

As we have recently learned, the performance of the finaligiied vector has been
analyzed by Vapnik and Chervonenkis (1974). We discuss boeind at the end of this
section.

We now give our analysis for the cage= 1. The analysis is in two parts and mostly
combines known material. First, we review the classicalyaig of the online percep-
tron algorithm in the linearly separable case, as well asxéension to the inseparable
case. Second, we review an analysis of the leave-one-owigon of an online learning
algorithm to a batch learning algorithm.
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Training

Input: a labeled training sé{x:, ¥1), ..., (Xm, ¥m))
number of epoch%’

Output: a list of weighted perceptrofsry, 1), ..., (Vk, ck))

e Initialize: k :=0,v; :=0, ¢y := 0.
e Repeafl' times:
- Fori=1,...,m:
x  Compute predictiong := sign(vy - X;)

* Ify=ythenc, :=c; + 1.
elsevyi1 = vi + ¥iXs;

Cht1 =1,
k:=Fk+1.
Prediction
Given: the list of weighted perceptrongvi, c1), ..., (vk, cx))

an unlabeled instance:
compute a predicted labglas follows:

k
s = Zci sign(v; - X);  § = sign(s) .
i=1

Figure 1. The voted-perceptron algorithm.

3.1. The online perceptron algorithm in the separable case

Our analysis is based on the following well known result fingived by Block (1962) and
Novikoff (1962). The significance of this result is that thenmber of mistakes does not
depend on the dimension of the instances. This gives readumelieve that the perceptron
algorithm might perform well in high dimensional spaces.

THEOREM 1 (BLOCK, NOVIKOFF) Let{(X1,%1),-.-, (Xm,ym)) be asequence of labeled
examples with|x;|| < R. Suppose that there exists a vectosuch that||u|| = 1 and
yi(u - x;) > ~ for all examples in the sequence. Then the number of mistakds by the
online perceptron algorithm on this sequence is at ni@&sty)?.

Proof: Although the proof is well known, we repeat it for completese

Let v; denote the prediction vector used prior to ke mistake. Thusy; = 0 and, if
the kth mistake occurs ofx;, y;) theny; (vi - X;) < 0andvgy1 = vi + ¥iX;.

We have

Vigr-u=vg -uty(u-X) > ve-u+y.
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Thereforeyi 41 -u > k.
Similarly,

Vil = [1Vall® + 20 (v - %) + (%[ < [lva]* + R?.

Therefore||vi41]|? < kR?.
Combining, gives

VER > ||Vigal| > vigr -u > ky

which impliesk < (R/~)? proving the theorem. O

3.2. Analysis for the inseparable case

If the data are not linearly separable then Theorem 1 cammaisbhd directly. However,

we now give a generalized version of the theorem which all@vsome mistakes in the
training set. As far as we know, this theorem is new, althotighproof technique is

very similar to that of Klasner and Simon (1995, Theorem.2S8e also the recent work
of Shawe-Taylor and Cristianini (1998) who used this teghgrito derive generalization
error bounds for any large margin classifier.

THEOREM 2 Let((X1,%1),--., (Xm,ym)) be a sequence of labeled examples With| <
R. Letu be any vector witlfju|| = 1 and lety > 0. Define the deviation of each example
as

d; = max{0,y —y;(u-X)},

and defineD = /37", d?. Then the number of mistakes of the online perceptron algo-
rithm on this sequence is bounded by

<R + D) :

v
Proof: The caseD = 0 follows from Theorem 1, so we can assume that- 0.

The proof is based on a reduction of the inseparable casegjpesiable case in a higher
dimensional space. As we will see, the reduction does natgehthe algorithm.

We extend the instance spagé to R"*™ by addingm new dimensions, one for each
example. Letx; € R™**™ denote the extension of the instange We set the first
coordinates ok} equal tox;. We set thegn + ¢)'th coordinate toA whereA is a positive
real constant whose value will be specified later. The reth@toordinates of; are set
to zero.

Next we extend the comparison veciore R” tou’ € R”*™. We use the constant
7, which we calculate shortly, to ensure that the lengtl'ols one. We set the first

coordinates oft’ equal tou/7. We set thén +7)'th coordinate tqy; d;) /(7 A). Itis easy
to check that the appropriate normalizatiotZis= /1 + D?/AZ.
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Consider the value af; (u’ - X}):

u-X; yid;
vi ( 7 T4 ZA)
yi(u-x;) d;

A + Z
yi(u- %) n v —yi(u-X)
- Z Z
X
7
Thus the extended prediction veciar achieves a margin of/+/1 + D?/A? on the ex-
tended examples.

In order to apply Theorem 1, we need a bound on the length ahtances. AR >
||x;|| for all i, and the only additional non-zero coordinate has valuee get that|x.||? <
R?+ AZ. Using these values in Theorem 1 we get that the number ofkeistof the online
perceptron algorithm if run in the extended space is at most

yi(u' - x;)

(R? + A%)(1+ D?/A?)
o '

SettingA = +/RD minimizes the bound and yields the bound given in the statéwie
the theorem.

To finish the proof we show that the predictions of the perapalgorithm in the ex-
tended space are equal to the predictions of the perceptribreioriginal space. We use
v; to denote the prediction vector used for predicting theaimsx; in the original space
andv} to denote the prediction vector used for predicting theegsponding instance in
the extended space. The claim follows by induction dver i < m of the following three
claims:

1. The firstn coordinates of/; are equal to those af;.

2. The(n + 7)'th coordinate ofv] is equal to zero.

3. sigr(v; - x}) = sign(v; - X;).

3.3. Converting online to batch

We now have an algorithm that will make few mistakes whengmtd with the examples
one by one. However, the setup we are interested in here ibatoh setup in which
we are given a training set, according to which we generatgpathesis, which is then
tested on a seperate test set. If the data are linearly &dpdnan the perceptron algorithm
eventually converges and we can use this final predictianasiour hypothesis. However,
the data might not be separable or we might not want to whidilvergence is achieved.
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In this case, we have to decide on the best prediction rukngive sequence of different
classifiers that the online algorithm genarates. One swldd this problem is to use the
prediction rule that has survived for the longest time befowas changed. A prediction
rule that has survived for a long time is likely to be betterttone that has only survived
for a few iterations. This method was suggested by Gall&@@g§)lwho called it th@ocket
method Littlestone (1989), suggested a two-phase method in wihietperformance of
all of the rules is tested on a seperate test set and the rthlélva least error is then used.
Here we use a different method for converting the onlinegyaron algorithm into a batch
learning algorithm; the method combines all of the rulessgated by the online algorithm
after it was run for just a single time through the traininggeda

We now describe Helmbold and Warmuth'’s (1995) very simpdave-one-out” method
of converting an online learning algorithm into a batch téag algorithm. Our voted-
perceptron algorithm is a simple application of this gehavathod. We start with the
randomized version. Given a training €k, y1), ..., (Xm, ¥m)) and an unlabeled in-
stancex, we do the following. We select a numbemn {0, ..., m} uniformly at random.
We then take the first examples in the training sequence and append the unlabeled i
stance to the end of this subsequence. We run the onlineitalgoon this sequence of
lengthr + 1, and use the prediction of the online algorithm on the laktheied instance.

In the deterministic leave-one-out conversion, we modifytandomized leave-one-out
conversion to make it deterministic in the obvious way byagiog the most likely predic-
tion. That is, we compute the prediction that would resultdlib possible choices of in
{0, ..., m}, and we take majority vote of these predictions. It is stitfigrward to show
that taking a majority vote runs the risk of doubling the bttty of mistake while it has
the potential of significantly decreasing it. In this work decided to focus primarily on
deterministic voting rather than randomization.

The following theorem follows directly from Helmbold and Wuth (1995). (See also
Kivinen and Warmuth (1997) and Cesa-Bianchi et al. (1997).)

THEOREM 3 Assume all examplds, y) are generated i.i.d. LeE be theexpectechum-

ber of mistakes that the online algorithithmakes on a randomly generated sequence of
m + 1 examples. Then given random training examples, the expected probability that
the randomized leave-one-out conversiomahakes a mistake on a randomly generated
test instance is at mogt/(m + 1). For the deterministic leave-one-out conversion, this
expected probability is at mo2&/(m + 1).

3.4. Putting it all together

It can be verified that the deterministic leave-one-out eosion of the online perceptron
algorithm is exactly equivalent to the voted-perceptrayjodthm of Figure 1 withl" = 1.
Thus, combining Theorems 2 and 3, we have:

COROLLARY 1 Assume all examples are generated i.i.d. at random. Let
((X1,91), - -+, (Xm, ym)) be a sequence of training examples and(¥gt +1, ym+1) be a
test example. LeR = maxj<j<m41 [[Xi||. For [[u|| = 1 andy > 0, let
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m+1

Duy = | D (max{0,y - i(u-x;)})*.

i=1

Then the probability (over the choice of all + 1 examples) that the voted-perceptron
algorithm with7" = 1 does not predicy,,+1 on test instancg,, .1 is at most

2
inf <7R+ D“”)
[lu]|=1;y>0 v

(where the expectation is also over the choice ofrall- 1 examples).

2
——E
m+1

In fact, the same proof yields a slightly stronger statemdrich depends only on exam-
ples on which mistakes occur. Formally, this can be statéaliasvs:

COROLLARY 2 Assume all examples are generated i.i.d. at random. Sughasee run
the online perceptron algorithm once on the sequeftge, y1), - . ., (Xm+1, Ym+1)), and
thatk mistakes occur on examples withindiégs . ., ir. Redefing? = maxi <;<x ||X;; 1],
and redefine

k

Dy y = Z (Hlax{O, Y — Yi; (u- Xij)})Q'

7j=1

Now suppose that we run the voted-perceptron algorithm ainittgg examples
((X1,31), - -+, (Xm, ym)) for a single epoch. Then the probability (over the choicelbf a
m+ 1 examples) that the voted-perceptron algorithm does naligtrg,, 1 ontestinstance

Xm+1 IS at most
R4 Dy~ \?
inf <7)
[lul]|=1;y>0 Y

(where the expectation is also over the choice ofrall- 1 examples).

2 2
—— E[k]< ——E
m+1 m+ 1

A rather similar theorem was proved by Vapnik and Chervoiefi©74, Theorem 6.1)
for training the perceptron algorithm to convergence aradlioting with the final percep-
tron vector.

THEOREM 4 (VAPNIK AND CHERVONENKIS) Assume all examples are generated i.i.d.
at random. Suppose that we run the online perceptron allgoribn the sequence
((X1,41)s -+ Xm+1, Ym+1)) repeatedly until convergence, and that mistakes occur on
a total ofk examples with indices, . . ., ;. Let R = max;<;<x [|X;, ||, and let
i 1I§nji£k iy (1 %;).

Assumey > 0 with probability one.

Now suppose that we run the perceptron algorithm to convexgen training examples
((X1,91), - - -, (Xm, ym)). Then the probability (over the choice of all+ 1 examples) that
the final perceptron does not predigt, 1 on test instance,,; is at most
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(2]}

(where the expectation is also over the choice ofrall- 1 examples).

1

——FE
m+1

For the separable case (in whitk, 4 can be set to zero), Corollary 2 is almost identical
to Theorem 4. One difference is thatin Corolary 2, we losetofaof 2. This is because we
use the deterministic algorithm, rather than the randotnizes. The other, more important
difference is thak, the number of mistakes that the perceptron makes, will sticertainly
be larger when the perceptron is run to convergence than wienun just for a single
epoch. This gives us some indication that running the vptdeptron algorithm with
T = 1 might be better than running it to convergence; however,eaperiments do not
support this prediction.

Vapnik (to appear) also gives a very similar bound for theeexgd error of support-
vector machines. There are two differences between thedso#irst, the set of vectors on
which the perceptron makes a mistake is replaced by the Se$sdéntial support vectors.”
Second, the radiuR is the maximal distance of any support vector from some agtim
chosen vector, rather than from the origin. (The supportors@re the training examples
which fall closest to the decision boundary.)

4. Kernel-based Classification

We have seen that the voted-perceptron algorithm has geadperformance bounds
when the data are (almost) linearly separable. Howevegatiseparability is a rather
strict condition. One way to make the method more powerfolisdding dimensions or
features to the input space. These new coordinates areneanfunctions of the original
coordinates. Usually if we add enough coordinates we caritiedata linearly separable.
If the separation is sufficiently good (in the senses of Taewr1 and 2) then the expected
generalization error will be small (provided we do not irage the complexity of instances
too much by moving to the higher dimensional space).

However, from a computational point of view, computing tteues of the additional
coordinates can become prohibitively hard. This problemsmametimes be solved by the
elegant method of kernel functions. The use of kernel fanstfor classification problems
was proposed by suggested Aizerman, Braverman and Roz(irfit) who specifically
described a method for combining kernel functions with tecpptron algorithm. Contin-
uing their work, Boser, Guyon and Vapnik (1992) suggestedgukernel functions with
SVM’s.

Kernel functions are functions of two variabl&¥x, y) which can be represented as an
inner productd(x) - ®(y) for some functiond : R” — RY and someV > 0. In other
words, we can calculat® (x, y) by mappingx andy to vectors®(x) and®(y) and then
taking their inner product.

For instance, an important kernel function that we use is plaiper is the polynomial
expansion

K(xy)=(14+x-y)¢. 1)
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There exist general conditions for checking if a functioa isernel function. In this par-
ticular case, however, it is straightforward to constr@ictvitnessing thatx” is a kernel
function. For instance, for = 3 andd = 2, we can choose

CD(X) = (1, 1‘%7 I; 933,, \/51‘1, \/'Emz, \/51‘37 \/5251252, \/51‘1253, \/§$21‘3)~

In general, forl > 2, we can defin@(x) to have one coordinaté/ (x) for each monomial
M (x) of degree at most over the variables, ..., z,, and where: is an appropriately
chosen constant.

Aizerman, Braverman and Rozonoer observed that the peoceglgorithm can be for-
mulated in such a way that all computations involving inseznare in fact in terms of inner
products - y between pairs of instances. Thus, if we want to map eachnosxao a vec-
tor ®(x) in a high dimensional space, we only need to be able to conipoés products
®(x) - ®(y), which is exactly what is computed by a kernel function. Gaptuoally, then,
with the kernel method, we can work with vectors in a very highensional space and
the algorithm’s performance only depends on linear sefléyaim this expanded space.
Computationally, however, we only need to modify the altfori by replacing each inner
product computatior-y with a kernel function computatioki (x, y). Similar observations
were made by Boser, Guyon and Vapnik for Vapnik’'s SVM alduorit

In this paper, we observe that all the computations in thedaperceptron learning al-
gorithm involving instances can also be written in termsmofer products, which means
that we can apply the kernel method to the voted-perceptgmrithm as well. Referring
to Figure 1, we see that both training and prediction invafveer products between in-
stancex and prediction vectorsy. In order to perform this operation efficiently, we store
each prediction vector;, in an implicit form, as the sum of instances that were added or
subtracted in order to create it. That is, eaghcan be written and stored as a sum

kE—1
Vi = E Yi; Xi;
j=1

for appropriate indices;. We can thus calculate the inner product witas

k—1
Vi - X = Zyij(xij ~X).
7j=1

To use a kernel functioi’, we would merely replace easf, - x by K (x;,, X).

Computing the prediction of the final vectef, on a test instance requiresk kernel
calculations wheré is the number of mistakes made by the algorithm during tnaini
Naively, the prediction of the voted-perceptron would seéemequireO (k?) kernel calcu-
lations since we need to compute- x for eachj < k, and sincey; itself involves a sum of
j—1instances. However, taking advantage of the recurrence x = v; -X+y;, (X;; -X), it
is clear that we can compute the prediction of the votedgptron also using onli kernel
calculations.

Thus, calculating the prediction of the voted-perceptrdremv using kernels is only
marginally more expensive than calculating the predictibthe final prediction vector,
assuming that both methods are trained for the same numiepoohs.
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d=1 d=2 d=3

20 random (unnorm) —— random (unnorm) —— random (unnorm) ——
last (unnorm) —— . last (unnorm) last (unnorm) ——
avg (unnorm) 8 b, avg (unnorm) 8 avg (unnorm)
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/

5 2
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random (unnorm) —— random (unnorm) —— random (unnorm) ——
last (unnorm) last (unnorm) last (unnorm)

8 avg (unnorm) 8 avg (unnorm) 8 avg (unnorm)

vote vote . vote

Test Erorr

1
Epoch

Figure 2.Learning curves for algorithms tested on NIST data.

5. Experiments

In our experiments, we followed closely the experimentéliseised by Cortes and Vap-
nik (1995) in their experiments on the NIST OCR datalda¥¢ée chose to use this setup
because the dataset is widely available and because Le@ln(#995) have published a
detailed comparison of the performance of some of the bg#taassification systems in
this setup.

Examples in this NIST database consist of labeled digitabjes of individual handwrit-
ten digits. Each instance i2& x 28 matrix in which each entry is an 8-bit representation
of a grey value, and labels are from the §@t...,9}. The dataset consists of 60,000
training examples and 10,000 test examples. We treat eaageias a vector iR“®*, and,
like Cortes and Vapnik, we use the polynomial kernels of BEjjtq expand this vector into
very high dimensions.

To handle multiclass data, we essentially reduced to 10rpimablems. That is, we
trained the voted-perceptron algorithm once for each oflthelasses. When training on
classt, we replaced each labeled exampte, y;) (wherey; € {0,...,9}) by the binary-
labeled exampléx;, +1) if y; = £ and by(x;, —1) if y; # £. Let

(Vi en) oy (v, k)
be the sequence of weighted prediction vectors which ré&suit training on class.

To make predictions on a new instancewe tried four different methods. In each
method, we first compute a scosg for each? € {0,...,9} and then predict with the
label receiving the highest score:

Yy = argmaxs;.
£
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Table 1.Results of experiments on NIST 10-class OCR data with 1, 2, 3. The rows marked SupVec
and Mistake give average number of support vectors and geeramber of mistakes. All other rows
give test error rate in percent for the various methods.

T=] 01 1 2 3 4 10 30
d=1 \ote 10.7 8.5 8.3 8.2 8.2 8.1
Avg. (unnorm) | 10.9 8.7 8.5 8.4 8.3 8.3
(norm) 10.9 8.5 8.3 8.2 8.2 8.1
Last (unnorm)| 16.0 14.7 13.6 13.9 13.7 135
(norm) 15.4 14.1 131 135 13.2 13.0
Rand. (unnorm)| 22.0 15.7 14.7 14.3 141 13.8
(norm) 215 15.2 14.2 13.8 13.6 13.2
SupVec 2,489 19,795 24,263 26,704 28,322 32,994
Mistake 3,342 25,461 48,431 70,915 93,090 223,657
d=2 \ote 6.0 2.8 24 2.2 2.1 1.8 1.8
Avg. (unnorm) 6.0 2.8 2.4 2.2 2.1 1.9 1.8
(norm) 6.2 3.0 25 2.3 2.2 1.9 1.8
Last (unnorm) 8.6 4.0 3.4 3.0 2.7 2.3 2.0
(norm) 8.4 3.9 3.3 3.0 2.7 2.3 1.9
Rand. (unnorm)| 13.4 5.9 4.7 4.1 3.8 2.9 2.4
(norm) 13.2 5.9 4.7 41 3.8 2.9 2.3
SupVec 1,639 8,190 9,888 10,818 11,424 12,963 13,861
Mistake 2,150 10,201 15,290 19,093 22,100 32,451 41,614
d=3 \ote 5.4 2.3 1.9 1.8 1.7 1.6 1.6
Avg. (unnorm) 5.3 2.3 1.9 1.8 1.7 1.6 15
(norm) 55 25 2.0 1.8 1.8 16 15
Last (unnorm) 6.9 3.1 25 2.2 2.0 1.7 1.6
(norm) 6.8 3.1 25 2.2 2.0 1.7 1.6
Rand. (unnorm)| 11.6 4.9 3.7 3.2 2.9 2.2 1.8
(norm) 115 4.8 3.7 3.2 2.9 2.2 1.8
SupVec 1,460 6,774 8,073 8,715 9,102 9,883 10,094
Mistake 1,937 8,475 11,739 13,757 15,129 18,422 19,473

The first method is to compute each score using the respdictalgorediction vector:

Sy = Vﬁé - X.
This method is denoted “last (unnormalized)” in the resultwariant of this method is to
compute scores after first normalizing the final predictiectors:

L
_Vkl-X

Sp = ———.
[IvE, Il

This method is denoted “last (normalized)” in the result@té\that normalizing vectors
has no effect for binary problems, but can plausibly be irtgarin the multiclass case.

The next method (denoted “vote”) uses the analog of the mtéstic leave-one-out
conversion. Here we set
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Table 2. Results of experiments on NIST 10-class OCR data wite 4,5,6. The rows marked
SupVec and Mistake give average number of support vectaraaerage number of mistakes. All
other rows give test error rate in percent for the varioushiogs.

T=] 01 1 2 3 4 10 30
d=4 \ote 5.4 2.2 1.8 1.7 1.6 1.6 1.6
Avg. (unnorm) 5.3 2.2 1.8 1.7 1.7 1.6 1.6
(norm) 55 2.3 1.9 1.7 1.6 16 1.6
Last (unnorm) 6.5 2.8 2.3 2.0 1.9 1.6 1.6
(norm) 6.5 2.8 2.3 2.0 1.9 16 1.6
Rand. (unnorm)| 11.5 4.6 35 3.1 2.7 2.1 1.8
(norm) 11.3 45 34 3.0 2.7 21 1.8
SupVec 1,406 6,338 7,453 7,944 8,214 8,673 8,717
Mistake 1,882 7,977 10,543 11,933 12,780 14,375 14,538
d=5 \ote 5.7 2.2 1.9 1.8 1.8 1.7 1.7
Avg. (unnorm) 5.7 2.3 1.9 1.8 1.7 1.7 1.7
(norm) 5.7 2.3 1.9 1.8 1.7 1.7 1.6
Last (unnorm) 6.6 3.0 2.2 1.9 1.9 1.8 1.7
(norm) 6.3 2.9 21 1.9 1.9 1.7 1.7
Rand. (unnorm)| 11.9 4.7 35 3.0 2.7 2.1 1.9
(norm) 115 45 34 29 2.6 2.0 1.8
SupVec 1,439 6,327 7,367 7,788 7,990 8,295 8,313
Mistake 1,953 8,044 10,379 11,563 12,215 13,234 13,289
d=6 \ote 6.0 25 21 2.0 1.9 1.9 1.9
Avg. (unnorm) 6.2 2.5 2.1 2.0 1.9 1.9 1.9
(norm) 6.0 25 21 2.0 1.9 1.8 1.8
Last (unnorm) 7.3 3.2 2.4 2.2 2.0 1.9 1.9
(norm) 6.9 3.0 2.3 21 2.0 1.9 1.9
Rand. (unnorm)| 12.8 5.0 3.8 3.3 3.0 2.3 2.0
(norm) 121 4.8 3.6 3.2 2.8 2.2 2.0
SupVec 1,488 6,521 7,572 7,947 8,117 8,284 8,285
Mistake 2,034 8,351 10,764 11,892 12,472 13,108 13,118
ks
Sp = Z ct signvf - x).
i=1

The third method (denoted “average (unnormalized)”) uses/arageof the predictions
of the prediction vectors

ke

Sp = ch (v x).

i=1

As in the “last” method, we also tried a variant (denoted fage (normalized)”) using
normalized prediction vectors:

Se:iclf viox .
BN A

i=1
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Table 3. Results of experiments on individual classes using polyiabkernels withd = 4. The rows marked SupVec
and Mistake give average number of support vectors and geenamber of mistakes. All other rows give test error rate in

percent for the various methods.

label | 0 1 2 3 4 5 6 7 8 9
T =01 \ote 0.7 0.5 1.3 15 1.4 14 0.9 1.3 1.8 21
Avg. (unnorm) 0.7 0.5 13 15 1.3 1.3 0.9 1.3 1.8 2.0
(norm) 0.7 0.5 13 15 1.4 14 0.9 1.3 1.8 21
Last 1.0 07 1.7 21 15 2.8 1.2 1.8 2.4 2.7
Rand. 21 13 3.0 3.7 3.0 3.2 2.2 2.7 4.7 4.5
SupVec 133 89 180 228 179 202 136 160 285 290
Mistake 133 89 180 228 179 202 136 160 285 290
T=1 \ote 03 03 0.6 0.5 0.5 0.5 0.5 0.6 0.7 0.9
Avg. (unnorm) 03 0.2 0.6 0.5 0.5 0.5 0.4 0.6 0.7 0.9
(norm) 03 0.2 0.6 0.6 0.5 0.5 0.4 0.6 0.8 1.0
Last 05 0.5 1.0 11 0.7 0.8 0.5 1.0 1.2 13
Rand. 0.8 0.6 14 15 1.2 13 0.9 1.2 1.9 21
SupVec 506 407 782 996 734 849 541 738 1,183 1,240
Mistake 506 407 782 996 734 849 541 738 1,183 1,240
T =10 \ote 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.7
Avg. (unnorm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.7
(norm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.7
Last 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.7
Rand. 03 03 0.5 0.6 0.5 0.6 0.5 0.6 0.8 0.9
SupVec 736 636 1,164 1,504 1,075 1,271 817 1,103 1,833 1,899
Mistake 837 824 1339 1,796 1,218 1,487 951 1,323 2,278 2,323
T =30 \ote 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.7
Avg. (unnorm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.6
(norm) 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.6
Last 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.5 0.6 0.7
Rand. 0.2 03 0.5 0.5 0.4 0.5 0.4 0.5 0.6 0.7
SupVec 740 643 1,168 1,512 1,078 1,277 823 1,103 1,856 1,920
Mistake 844 843 1,345 1,811 1,222 1,497 960 1,323 2,326 2,367
Cortes & Vapnik 02 0.1 0.4 0.4 0.4 0.5 0.3 0.4 0.5 0.6
SupVec 1,379 989 1958 1,900 1,224 2,024 1527 2,064 2,332 2,765

The final method (denoted “random (unnormalized)”), is asggle analog of the ran-
domized leave-one-out method in which we predict using tlediption vectors that exist

at a randomly chosen “time slice.” That is, tdte the number of rounds executed (i.e., the
number of examples processed by the inner loop of the algo)iso that

for all £. To classifyx, we choose a “time slice? € {0, ...,¢} uniformly at random. We

then set

z

SEIVW~X
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Table 4.Results of experiments on NIST data when distinguishindt®h all other digits. The
rows marked SupVec and Mistake give average number of stippotors and average number
of mistakes. All other rows give test error rate in percentti@ various methods.

T=] 01 1 2 3 4 10 30
d=1 \ote 45 3.9 3.8 3.8 3.8 3.7
Avg. (unnorm) | 4.5 3.9 3.8 3.8 3.8 3.7
(norm) 4.6 3.9 3.9 3.8 3.8 3.8
Last 7.9 6.4 5.7 6.3 5.8 5.9
Rand. 8.3 6.7 6.5 6.3 6.2 6.2
SupVec 513 4,085 5,240 5,888 6,337 7,661
Mistake 513 4,085 7,880 11,630 15,342 37,408
d=2 \ote 24 1.2 1.0 0.9 0.9 0.8 0.8
Avg. (unnorm) | 2.4 1.2 1.0 1.0 0.9 0.9 0.8
(norm) 25 13 11 1.0 1.0 0.9 0.8
Last 41 1.8 16 1.6 13 11 1.0
Rand. 55 2.8 2.2 1.9 1.8 14 1.1
SupVec 337 1,668 2,105 2,358 2,527 2,983 3,290
Mistake 337 1,668 2,541 3,209 3,744 5,694 7,715
d=3 \ote 2.2 1.0 0.8 0.8 0.7 0.7 0.7
Avg. (unnorm) | 2.1 0.9 0.8 0.8 0.7 0.7 0.6
(norm) 2.2 1.0 0.8 0.8 0.8 0.7 0.6
Last 2.9 13 1.0 1.0 0.8 0.7 0.7
Rand. 4.9 2.2 1.7 1.5 14 1.0 0.8
SupVec 302 1,352 1,666 1,842 1,952 2,192 2,283
Mistake 302 1,352 1,867 2,202 2,448 3,056 3,318
d=4 \ote 21 0.9 0.8 0.7 0.7 0.7 0.7
Avg. (unnorm) | 2.0 0.9 0.8 0.7 0.7 0.7 0.6
(norm) 21 1.0 0.8 0.8 0.7 0.7 0.6
Last 2.7 13 1.0 0.8 0.8 0.7 0.7
Rand. 45 21 16 14 1.2 0.9 0.7
SupVec 290 1,240 1,528 1,669 1,746 1,899 1,920
Mistake 290 1,240 1,648 1,882 2,020 2,323 2,367
d=5 \ote 2.2 0.9 0.8 0.7 0.7 0.7 0.7
Avg. (unnorm) | 2.2 0.9 0.8 0.7 0.7 0.7 0.7
(norm) 2.2 1.0 0.8 0.8 0.7 0.7 0.7
Last 2.7 13 1.0 0.9 0.8 0.7 0.7
Rand. 4.6 2.0 15 1.3 1.2 0.9 0.8
SupVec 294 1,229 1,502 1,628 1,693 1,817 1,827
Mistake 294 1,229 1,598 1,798 1,908 2,132 2,150
d=6 \ote 2.3 0.9 0.8 0.8 0.8 0.8 0.7
Avg. (unnorm) | 2.3 0.9 0.8 0.8 0.8 0.7 0.7
(norm) 2.3 1.0 0.8 0.8 0.8 0.7 0.7
Last 2.7 13 1.0 0.9 0.8 0.8 0.7
Rand. 4.7 21 16 1.3 1.2 0.9 0.8
SupVec 302 1,263 1,537 1,655 1,715 1,774 1,776
Mistake 302 1,263 1,625 1,810 1,916 2,035 2,039

15
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wherer, is the index of the final vector which existed at timéor label¢. Formally,r, is
the largest number if0, . . ., k,} satisfying

T‘[—l
E cf <r
i=1

The analogous normalized method (“Random (normalized)&su

Our analysis is applicable only for the cases of voted or@ariy chosen predictions and
whereT = 1. However, in the experiments, we ran the algorithm Withp to30. When
using polynomial kernels of degree 5 or more, the data besdimearly separable. Thus,
after several iterations, the perceptron algorithm caye®to a consistent prediction vector
and makes no more mistakes. After this happens, the finadpion gains more and more
weight in both “vote” and “average.” This tends to have thieafof causing all of the
variants to converge eventually to the same solution. Bghieg this limit we compare
the voted-perceptron algorithm to the standard way in wttiehperceptron algorithm is
used, which is to find a consistent prediction rule.

We performed experiments with polynomial kernels for disiensd = 1 (which cor-
responds to no expansion) updo= 6. We preprocessed the data on each experiment by
randomly permuting the training sequence. Each experimantrepeated 10 times, each
time with a different random permutation of the trainingmypdes. Ford = 1, we were
only able to run the experiment for ten epochs for reasonsiwduie described below.

Figure 2 shows plots of the test error as a function of the rermobepochs for four of
the prediction methods — “vote” and the unnormalized varsiof “last,” “average” and
“random” (we omitted the normalized versions for the sakesafiability). Test errors are
averaged over the multiple runs of the algorithm, and ardgdane point for every tenth
of an epoch.

Some of the results are also summarized numerically in $abland 2 which show
(average) test error for several valuesiofor the seven different methods in the rows
marked “Vote,” “Avg. (unnorm),” etc. The rows marked “Sup¥eshow the number of
“support vectors,” that is, the total number of instances Httually are used in computing
scores as above. In other words, this is the size of the urfiali mstances on which a
mistake occured during training. The rows marked “Mistakedw the total number of
mistakes made during training for the 10 different labetsevery case, we have averaged
over the multiple runs of the algorithm.

The column corresponding = 0.1 is helpful for getting an idea of how the algorithms
perform on smaller datasets since in this case, each digohias only used a tenth of the
available data (about 6000 training examples).

Ironically, the algorithm runs slowest with small valuesdofror larger values of, we
move to a much higher dimensional space in which the datanhbexdinearly separable.
For small values off — especially ford = 1 — the data are not linearly separable which
means that the perceptron algorithm tends to make manykagstahich slows down the
algorithm significantly. This is why, fof = 1, we could not even complete a run out to 30
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epochs but had to stopat= 10 (after about six days of computation). In comparison, for
d = 2, we can run 30 epochs in about 25 hours, andifer 5 or 6, a complete run takes
about 8 hours. (All running times are on a single SGI MIPS R0frocessor running at
194 MHZ.)

The most significant improvement in performance is cleadineend = 1 andd = 2.
The migration to a higher dimensional space makes a trenosrtiference compared to
running the algorithm in the given space. The improvementtd £> 2 are not nearly as
dramatic.

Our results indicate that voting and averaging performepéttan using the last vector.
This is especially true prior to convergence of the percegptipdates. Fod = 1, the data
are highly inseparable, so in this case the improvemenigtefer as long as we were able
to run the algorithm. For higher dimensiors¥ 1), the data becomes more separable and
the perceptron update rule converges (or almost conveligeghich case the performance
of all the prediction methods is very similar. Still, evertlvs case, there is an advantage
to using voting or averaging for a relatively small numbeepbchs.

There does not seem to be any significant difference betweténgvand averaging in
terms of performance. However, using random vectors paddhe worst in all cases.
This stands in contrast to our analysis, which applies amlahdom vectors and gives an
upper bound on the error of average vectors which is twiceethmr of the randomized
vectors. A more refined analysis of the effect of averagingdgiired to better explain the
observed behavior.

Using normalized vectors seems to sometimes help a bit &flést” method, but can
help or hurt performance slightly for the “average” methiodany case, the differences in
performance between using normalized and unnormalizedngeare always minor.

LeCun et al. (1995) give a detailed comparison of algoritbmthis dataset. The best of
the algorithms that they tested is (a rather old version ofisting on top of the neural net
LeNet 4 which achieves an error rate of 0.7%. A version of thgneal margin classifier
algorithm (Cortes & Vapnik, 1995), using the same kernetfigm, performs significantly
better than ours, achieving a test error rate of 1.1%l/fer4.

Table 3 shows how the variants of the perceptron algorithrfopa on the ten binary
problems corresponding to the 10 class labels. For thigtai fixd = 4, and we also
compare performance to that reported by Cortes and Vap8ig5jifor SVM's. Table 4
gives more details of how the perceptron methods perfornhersingle binary problem
of distinguishing “9” from all other images. Note that théseary problems come closest
to the theory discussed earlier in the paper. It is intemgdtiat the perceptron algorithm
generally ends up using fewer support vectors than with tHd 8lgorithm.

6. Conclusions and Summary

The most significant result of our experiments is that rugnire perceptron algorithm in
a higher dimensional space using kernel functions produergssignificant improvements
in performance, yielding accuracy levels that are comparaihough still inferior, to those

obtainable with support-vector machines. On the other hamdalgorithm is much faster
and easier to implement than the latter method. In additt@theoretical analysis of the
expected error of the perceptron algorithm yields very lsintiounds to those of support-
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vector machines. Itis an open problem to develop a better¢tieal understanding of the
empirical superiority of support-vector machines.

We also find it significant that voting and averaging work &ethan just using the final
hypothesis. This indicates that the theoretical analygigch suggests using voting, is
capturing some of the truth. On the other hand, we do not hakeaxetical explanation
for the improvement in performance following the first epoch
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Notes

1. Storing all of these vectors might seem an excessive vedsteemory. However, as we shall see, when
perceptrons are used together with kernels, the excessimorgeand computition is really quite minimal.
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http://ww. research. att. com ~yann/ ocr/ for information on obtaining this dataset and for a
list of relevant publications.
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